IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37066-y.html
   My bibliography  Save this article

Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction

Author

Listed:
  • Wenjun Fan

    (Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

  • Zhiyao Duan

    (Northwestern Polytechnical University)

  • Wei Liu

    (Dalian University of Technology)

  • Rashid Mehmood

    (Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiating Qu

    (Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yucheng Cao

    (Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiangyang Guo

    (Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

  • Jun Zhong

    (Soochow University)

  • Fuxiang Zhang

    (Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

Abstract

Single-atom catalysts supported on solid substrates have inspired extensive interest, but the rational design of high-efficiency single-atom catalysts is still plagued by ambiguous structure determination of active sites and its local support effect. Here, we report hybrid single-atom catalysts by an axial coordination linkage of molecular cobalt phthalocyanine with carbon nanotubes for selective oxygen reduction reaction by screening from a series of metal phthalocyanines via preferential density-functional theory calculations. Different from conventional heterogeneous single-atom catalysts, the hybrid single-atom catalysts are proven to facilitate rational screening of target catalysts as well as understanding of its underlying oxygen reduction reaction mechanism due to its well-defined active site structure and clear coordination linkage in the hybrid single-atom catalysts. Consequently, the optimized Co hybrid single-atom catalysts exhibit improved 2e− oxygen reduction reaction performance compared to the corresponding homogeneous molecular catalyst in terms of activity and selectivity. When prepared as an air cathode in an air-breathing flow cell device, the optimized hybrid catalysts enable the oxygen reduction reaction at 300 mA cm−2 exhibiting a stable Faradaic efficiency exceeding 90% for 25 h.

Suggested Citation

  • Wenjun Fan & Zhiyao Duan & Wei Liu & Rashid Mehmood & Jiating Qu & Yucheng Cao & Xiangyang Guo & Jun Zhong & Fuxiang Zhang, 2023. "Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37066-y
    DOI: 10.1038/s41467-023-37066-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37066-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37066-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stafford W. Sheehan & Julianne M. Thomsen & Ulrich Hintermair & Robert H. Crabtree & Gary W. Brudvig & Charles A. Schmuttenmaer, 2015. "A molecular catalyst for water oxidation that binds to metal oxide surfaces," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    2. Xiao Zhang & Yang Wang & Meng Gu & Maoyu Wang & Zisheng Zhang & Weiying Pan & Zhan Jiang & Hongzhi Zheng & Marcos Lucero & Hailiang Wang & George E. Sterbinsky & Qing Ma & Yang-Gang Wang & Zhenxing Fe, 2020. "Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction," Nature Energy, Nature, vol. 5(9), pages 684-692, September.
    3. Yueshen Wu & Zhan Jiang & Xu Lu & Yongye Liang & Hailiang Wang, 2019. "Domino electroreduction of CO2 to methanol on a molecular catalyst," Nature, Nature, vol. 575(7784), pages 639-642, November.
    4. Lichen Bai & Chia-Shuo Hsu & Duncan T. L. Alexander & Hao Ming Chen & Xile Hu, 2021. "Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis," Nature Energy, Nature, vol. 6(11), pages 1054-1066, November.
    5. Jia-Wei Wang & Long Jiang & Hai-Hua Huang & Zhiji Han & Gangfeng Ouyang, 2021. "Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Qizhan Zhang & Minghua Zhou & Gengbo Ren & Yawei Li & Yanchun Li & Xuedong Du, 2020. "Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyao Cheng & Daohu Sheng & Soumya Mukherjee & Wei Dong & Yuanbiao Huang & Rong Cao & Aming Xie & Roland A. Fischer & Weijin Li, 2024. "Carbon nanolayer-mounted single metal sites enable dipole polarization loss under electromagnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yu Yang & Cheng Zhang & Chengyi Zhang & Yaohui Shi & Jun Li & Bernt Johannessen & Yongxiang Liang & Shuzhen Zhang & Qiang Song & Haowei Zhang & Jialei Huang & Jingwen Ke & Lei Zhang & Qingqing Song & , 2024. "Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Feng Wu & Xiaokang Liu & Shiqi Wang & Longfei Hu & Sebastian Kunze & Zhenggang Xue & Zehao Shen & Yaxiong Yang & Xinqiang Wang & Minghui Fan & Hongge Pan & Xiaoping Gao & Tao Yao & Yuen Wu, 2024. "Identification of K+-determined reaction pathway for facilitated kinetics of CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Jia-Wei Wang & Fengyi Zhao & Lucia Velasco & Maxime Sauvan & Dooshaye Moonshiram & Martina Salati & Zhi-Mei Luo & Sheng He & Tao Jin & Yan-Fei Mu & Mehmed Z. Ertem & Tianquan Lian & Antoni Llobet, 2024. "Molecular catalyst coordinatively bonded to organic semiconductors for selective light-driven CO2 reduction in water," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yongxiang Liang & Jiankang Zhao & Yu Yang & Sung-Fu Hung & Jun Li & Shuzhen Zhang & Yong Zhao & An Zhang & Cheng Wang & Dominique Appadoo & Lei Zhang & Zhigang Geng & Fengwang Li & Jie Zeng, 2023. "Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Lejing Li & Zhuofeng Hu & Yongqiang Kang & Shiyu Cao & Liangpang Xu & Luo Yu & Lizhi Zhang & Jimmy C. Yu, 2023. "Electrochemical generation of hydrogen peroxide from a zinc gallium oxide anode with dual active sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Qianbao Wu & Junwu Liang & Mengjun Xiao & Chang Long & Lei Li & Zhenhua Zeng & Andraž Mavrič & Xia Zheng & Jing Zhu & Hai-Wei Liang & Hongfei Liu & Matjaz Valant & Wei Wang & Zhengxing Lv & Jiong Li &, 2023. "Non-covalent ligand-oxide interaction promotes oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Ruilin Wang & Hao Luo & Chengyu Duan & Huimin Liu & Mengdi Sun & Quan Zhou & Zheshun Ou & Yinglong Lu & Guanghui Luo & Jimmy C. Yu & Zhuofeng Hu, 2024. "Crystal OH mediating pathway for hydrogen peroxide production via two-electron water oxidation in non-carbonate electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Zhirong Zhang & Chen Feng & Dongdi Wang & Shiming Zhou & Ruyang Wang & Sunpei Hu & Hongliang Li & Ming Zuo & Yuan Kong & Jun Bao & Jie Zeng, 2022. "Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Changjiang Hu & Zhiwen Jiang & Qunyan Wu & Shuiyan Cao & Qiuhao Li & Chong Chen & Liyong Yuan & Yunlong Wang & Wenyun Yang & Jinbo Yang & Jing Peng & Weiqun Shi & Maolin Zhai & Mehran Mostafavi & Jun , 2023. "Selective CO2 reduction to CH3OH over atomic dual-metal sites embedded in a metal-organic framework with high-energy radiation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Xianlong Li & Zhiliang Wang & Alireza Sasani & Ardeshir Baktash & Kai Wang & Haijiao Lu & Jiakang You & Peng Chen & Ping Chen & Yifan Bao & Shujun Zhang & Gang Liu & Lianzhou Wang, 2024. "Oxygen vacancy induced defect dipoles in BiVO4 for photoelectrocatalytic partial oxidation of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Jiali Wang & Chia-Shuo Hsu & Tai-Sing Wu & Ting-Shan Chan & Nian-Tzu Suen & Jyh-Fu Lee & Hao Ming Chen, 2023. "In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    20. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37066-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.