IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36568-z.html
   My bibliography  Save this article

Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy

Author

Listed:
  • Matthew Sadd

    (Chalmers University of Technology)

  • Shizhao Xiong

    (Chalmers University of Technology)

  • Jacob R. Bowen

    (Xnovo Technology ApS)

  • Federica Marone

    (Paul Scherrer Institute, Swiss Light Source)

  • Aleksandar Matic

    (Chalmers University of Technology)

Abstract

Efficient lithium metal stripping and plating operation capable of maintaining electronic and ionic conductivity is crucial to develop safe lithium metal batteries. However, monitoring lithium metal microstructure evolution during cell cycling is challenging. Here, we report the development of an operando synchrotron X-ray tomographic microscopy method capable of probing in real-time the formation, growth, and dissolution of Li microstructures during the cycling of a Li||Cu cell containing a standard non-aqueous liquid electrolyte solution. The analyses of the operando X-ray tomographic microscopy measurements enable tracking the evolution of deposited Li metal as a function of time and applied current density and distinguishing the formation of electrochemically inactive Li from the active bulk of Li microstructures. Furthermore, in-depth analyses of the Li microstructures shed some light on the structural connectivity of deposited Li at different current densities as well as the formation mechanism of fast-growing fractal Li microstructures, which are ultimately responsible for cell failure.

Suggested Citation

  • Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36568-z
    DOI: 10.1038/s41467-023-36568-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36568-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36568-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. J. Louli & A. Eldesoky & Rochelle Weber & M. Genovese & Matt Coon & Jack deGooyer & Zhe Deng & R. T. White & Jaehan Lee & Thomas Rodgers & R. Petibon & S. Hy & Shawn J. H. Cheng & J. R. Dahn, 2020. "Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis," Nature Energy, Nature, vol. 5(9), pages 693-702, September.
    2. Michael J. Zachman & Zhengyuan Tu & Snehashis Choudhury & Lynden A. Archer & Lena F. Kourkoutis, 2018. "Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries," Nature, Nature, vol. 560(7718), pages 345-349, August.
    3. Chengcheng Fang & Bingyu Lu & Gorakh Pawar & Minghao Zhang & Diyi Cheng & Shuru Chen & Miguel Ceja & Jean-Marie Doux & Henry Musrock & Mei Cai & Boryann Liaw & Ying Shirley Meng, 2021. "Pressure-tailored lithium deposition and dissolution in lithium metal batteries," Nature Energy, Nature, vol. 6(10), pages 987-994, October.
    4. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    5. Jun Liu & Zhenan Bao & Yi Cui & Eric J. Dufek & John B. Goodenough & Peter Khalifah & Qiuyan Li & Bor Yann Liaw & Ping Liu & Arumugam Manthiram & Y. Shirley Meng & Venkat R. Subramanian & Michael F. T, 2019. "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, Nature, vol. 4(3), pages 180-186, March.
    6. Weijiang Xue & Mingjun Huang & Yutao Li & Yun Guang Zhu & Rui Gao & Xianghui Xiao & Wenxu Zhang & Sipei Li & Guiyin Xu & Yang Yu & Peng Li & Jeffrey Lopez & Daiwei Yu & Yanhao Dong & Weiwei Fan & Zhe , 2021. "Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte," Nature Energy, Nature, vol. 6(5), pages 495-505, May.
    7. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    8. Chengcheng Fang & Jinxing Li & Minghao Zhang & Yihui Zhang & Fan Yang & Jungwoo Z. Lee & Min-Han Lee & Judith Alvarado & Marshall A. Schroeder & Yangyuchen Yang & Bingyu Lu & Nicholas Williams & Migue, 2019. "Quantifying inactive lithium in lithium metal batteries," Nature, Nature, vol. 572(7770), pages 511-515, August.
    9. Kai Yan & Zhenda Lu & Hyun-Wook Lee & Feng Xiong & Po-Chun Hsu & Yuzhang Li & Jie Zhao & Steven Chu & Yi Cui, 2016. "Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth," Nature Energy, Nature, vol. 1(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    7. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Chengbin Jin & Yiyu Huang & Lanhang Li & Guoying Wei & Hongyan Li & Qiyao Shang & Zhijin Ju & Gongxun Lu & Jiale Zheng & Ouwei Sheng & Xinyong Tao, 2023. "A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Zhixin Xu & Xiyue Zhang & Jun Yang & Xuzixu Cui & Yanna Nuli & Jiulin Wang, 2024. "High-voltage and intrinsically safe electrolytes for Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Qian Chen & Binyin Gao & Zhilin Yang & Yong Li & QingWei Zhai & Yangyu Jia & Qiannan Zhang & Xiaokang Gu & Jinghan Zuo & Lei Wang & Tianshuai Wang & Pengbo Zhai & Cheng Yang & Yongji Gong, 2024. "Macroscopically uniform interface layer with Li+ conductive channels for high-performance Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Solomon T. Oyakhire & Wenbo Zhang & Andrew Shin & Rong Xu & David T. Boyle & Zhiao Yu & Yusheng Ye & Yufei Yang & James A. Raiford & William Huang & Joel R. Schneider & Yi Cui & Stacey F. Bent, 2022. "Electrical resistance of the current collector controls lithium morphology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36568-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.