IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36853-x.html
   My bibliography  Save this article

Anion-enrichment interface enables high-voltage anode-free lithium metal batteries

Author

Listed:
  • Minglei Mao

    (Beijing National Laboratory for Condensed Matter Physics
    Huazhong University of Science and Technology)

  • Xiao Ji

    (Huazhong University of Science and Technology)

  • Qiyu Wang

    (Beijing National Laboratory for Condensed Matter Physics)

  • Zejing Lin

    (Beijing National Laboratory for Condensed Matter Physics)

  • Meiying Li

    (Beijing National Laboratory for Condensed Matter Physics)

  • Tao Liu

    (Beijing National Laboratory for Condensed Matter Physics)

  • Chengliang Wang

    (Huazhong University of Science and Technology)

  • Yong-Sheng Hu

    (Beijing National Laboratory for Condensed Matter Physics)

  • Hong Li

    (Beijing National Laboratory for Condensed Matter Physics)

  • Xuejie Huang

    (Beijing National Laboratory for Condensed Matter Physics)

  • Liquan Chen

    (Beijing National Laboratory for Condensed Matter Physics)

  • Liumin Suo

    (Beijing National Laboratory for Condensed Matter Physics)

Abstract

Aggressive chemistry involving Li metal anode (LMA) and high-voltage LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode is deemed as a pragmatic approach to pursue the desperate 400 Wh kg−1. Yet, their implementation is plagued by low Coulombic efficiency and inferior cycling stability. Herein, we propose an optimally fluorinated linear carboxylic ester (ethyl 3,3,3-trifluoropropanoate, FEP) paired with weakly solvating fluoroethylene carbonate and dissociated lithium salts (LiBF4 and LiDFOB) to prepare a weakly solvating and dissociated electrolyte. An anion-enrichment interface prompts more anions’ decomposition in the inner Helmholtz plane and higher reduction potential of anions. Consequently, the anion-derived interface chemistry contributes to the compact and columnar-structure Li deposits with a high CE of 98.7% and stable cycling of 4.6 V NCM811 and LiCoO2 cathode. Accordingly, industrial anode-free pouch cells under harsh testing conditions deliver a high energy of 442.5 Wh kg−1 with 80% capacity retention after 100 cycles.

Suggested Citation

  • Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36853-x
    DOI: 10.1038/s41467-023-36853-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36853-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36853-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moonsu Yoon & Yanhao Dong & Jaeseong Hwang & Jaekyung Sung & Hyungyeon Cha & Kihong Ahn & Yimeng Huang & Seok Ju Kang & Ju Li & Jaephil Cho, 2021. "Author Correction: Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries," Nature Energy, Nature, vol. 6(8), pages 846-846, August.
    2. Chengcheng Fang & Bingyu Lu & Gorakh Pawar & Minghao Zhang & Diyi Cheng & Shuru Chen & Miguel Ceja & Jean-Marie Doux & Henry Musrock & Mei Cai & Boryann Liaw & Ying Shirley Meng, 2021. "Pressure-tailored lithium deposition and dissolution in lithium metal batteries," Nature Energy, Nature, vol. 6(10), pages 987-994, October.
    3. Zhiao Yu & Hansen Wang & Xian Kong & William Huang & Yuchi Tsao & David G. Mackanic & Kecheng Wang & Xinchang Wang & Wenxiao Huang & Snehashis Choudhury & Yu Zheng & Chibueze V. Amanchukwu & Samantha , 2020. "Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries," Nature Energy, Nature, vol. 5(7), pages 526-533, July.
    4. Jun Liu & Zhenan Bao & Yi Cui & Eric J. Dufek & John B. Goodenough & Peter Khalifah & Qiuyan Li & Bor Yann Liaw & Ping Liu & Arumugam Manthiram & Y. Shirley Meng & Venkat R. Subramanian & Michael F. T, 2019. "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, Nature, vol. 4(3), pages 180-186, March.
    5. Gui-Liang Xu & Qiang Liu & Kenneth K. S. Lau & Yuzi Liu & Xiang Liu & Han Gao & Xinwei Zhou & Minghao Zhuang & Yang Ren & Jiadong Li & Minhua Shao & Minggao Ouyang & Feng Pan & Zonghai Chen & Khalil A, 2019. "Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes," Nature Energy, Nature, vol. 4(6), pages 484-494, June.
    6. Weijiang Xue & Mingjun Huang & Yutao Li & Yun Guang Zhu & Rui Gao & Xianghui Xiao & Wenxu Zhang & Sipei Li & Guiyin Xu & Yang Yu & Peng Li & Jeffrey Lopez & Daiwei Yu & Yanhao Dong & Weiwei Fan & Zhe , 2021. "Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte," Nature Energy, Nature, vol. 6(5), pages 495-505, May.
    7. Pengfei Yan & Jianming Zheng & Jian Liu & Biqiong Wang & Xiaopeng Cheng & Yuefei Zhang & Xueliang Sun & Chongmin Wang & Ji-Guang Zhang, 2018. "Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries," Nature Energy, Nature, vol. 3(7), pages 600-605, July.
    8. Chengcheng Fang & Jinxing Li & Minghao Zhang & Yihui Zhang & Fan Yang & Jungwoo Z. Lee & Min-Han Lee & Judith Alvarado & Marshall A. Schroeder & Yangyuchen Yang & Bingyu Lu & Nicholas Williams & Migue, 2019. "Quantifying inactive lithium in lithium metal batteries," Nature, Nature, vol. 572(7770), pages 511-515, August.
    9. Moonsu Yoon & Yanhao Dong & Jaeseong Hwang & Jaekyung Sung & Hyungyeon Cha & Kihong Ahn & Yimeng Huang & Seok Ju Kang & Ju Li & Jaephil Cho, 2021. "Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries," Nature Energy, Nature, vol. 6(4), pages 362-371, April.
    10. Liumin Suo & Yong-Sheng Hu & Hong Li & Michel Armand & Liquan Chen, 2013. "A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries," Nature Communications, Nature, vol. 4(1), pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shitao Geng & Xiaoju Zhao & Qiuchen Xu & Bin Yuan & Yan Wang & Meng Liao & Lei Ye & Shuo Wang & Zhaofeng Ouyang & Liang Wu & Yongyang Wang & Chenyan Ma & Xiaojuan Zhao & Hao Sun, 2024. "A rechargeable Ca/Cl2 battery," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yanhua Zhang & Rui Qiao & Qiaona Nie & Peiyu Zhao & Yong Li & Yunfei Hong & Shengjie Chen & Chao Li & Baoyu Sun & Hao Fan & Junkai Deng & Jingying Xie & Feng Liu & Jiangxuan Song, 2024. "Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    8. Zheng Li & Harsha Rao & Rasha Atwi & Bhuvaneswari M. Sivakumar & Bharat Gwalani & Scott Gray & Kee Sung Han & Thomas A. Everett & Tanvi A. Ajantiwalay & Vijayakumar Murugesan & Nav Nidhi Rajput & Vila, 2023. "Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Yanhua Zhang & Rui Qiao & Qiaona Nie & Peiyu Zhao & Yong Li & Yunfei Hong & Shengjie Chen & Chao Li & Baoyu Sun & Hao Fan & Junkai Deng & Jingying Xie & Feng Liu & Jiangxuan Song, 2024. "Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Jianwen Liang & Yuanmin Zhu & Xiaona Li & Jing Luo & Sixu Deng & Yang Zhao & Yipeng Sun & Duojie Wu & Yongfeng Hu & Weihan Li & Tsun-Kong Sham & Ruying Li & Meng Gu & Xueliang Sun, 2023. "A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Zhixin Xu & Xiyue Zhang & Jun Yang & Xuzixu Cui & Yanna Nuli & Jiulin Wang, 2024. "High-voltage and intrinsically safe electrolytes for Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Solomon T. Oyakhire & Wenbo Zhang & Andrew Shin & Rong Xu & David T. Boyle & Zhiao Yu & Yusheng Ye & Yufei Yang & James A. Raiford & William Huang & Joel R. Schneider & Yi Cui & Stacey F. Bent, 2022. "Electrical resistance of the current collector controls lithium morphology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Ziyang Lu & Huijun Yang & Jianming Sun & Jun Okagaki & Yoongkee Choe & Eunjoo Yoo, 2024. "Conformational isomerism breaks the electrolyte solubility limit and stabilizes 4.9 V Ni-rich layered cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Shuoqing Zhang & Ruhong Li & Nan Hu & Tao Deng & Suting Weng & Zunchun Wu & Di Lu & Haikuo Zhang & Junbo Zhang & Xuefeng Wang & Lixin Chen & Liwu Fan & Xiulin Fan, 2022. "Tackling realistic Li+ flux for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36853-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.