IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i10d10.1038_s41560-021-00917-3.html
   My bibliography  Save this article

Pressure-tailored lithium deposition and dissolution in lithium metal batteries

Author

Listed:
  • Chengcheng Fang

    (University of California San Diego
    Michigan State University)

  • Bingyu Lu

    (University of California San Diego)

  • Gorakh Pawar

    (Idaho National Laboratory)

  • Minghao Zhang

    (University of California San Diego)

  • Diyi Cheng

    (University of California San Diego)

  • Shuru Chen

    (General Motors Research and Development Center)

  • Miguel Ceja

    (University of California San Diego)

  • Jean-Marie Doux

    (University of California San Diego)

  • Henry Musrock

    (Michigan State University)

  • Mei Cai

    (General Motors Research and Development Center)

  • Boryann Liaw

    (Idaho National Laboratory)

  • Ying Shirley Meng

    (University of California San Diego)

Abstract

Unregulated lithium (Li) growth is the major cause of low Coulombic efficiency, short cycle life and safety hazards for rechargeable Li metal batteries. Strategies that aim to achieve large granular Li deposits have been extensively explored, and yet it remains a challenge to achieve the ideal Li deposits, which consist of large Li particles that are seamlessly packed on the electrode and can be reversibly deposited and stripped. Here we report a dense Li deposition (99.49% electrode density) with an ideal columnar structure that is achieved by controlling the uniaxial stack pressure during battery operation. Using multiscale characterization and simulation, we elucidate the critical role of stack pressure on Li nucleation, growth and dissolution processes and propose a Li-reservoir-testing protocol to maintain the ideal Li morphology during extended cycling. The precise manipulation of Li deposition and dissolution is a critical step to enable fast charging and a low-temperature operation for Li metal batteries.

Suggested Citation

  • Chengcheng Fang & Bingyu Lu & Gorakh Pawar & Minghao Zhang & Diyi Cheng & Shuru Chen & Miguel Ceja & Jean-Marie Doux & Henry Musrock & Mei Cai & Boryann Liaw & Ying Shirley Meng, 2021. "Pressure-tailored lithium deposition and dissolution in lithium metal batteries," Nature Energy, Nature, vol. 6(10), pages 987-994, October.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:10:d:10.1038_s41560-021-00917-3
    DOI: 10.1038/s41560-021-00917-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00917-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00917-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Chengbin Jin & Yiyu Huang & Lanhang Li & Guoying Wei & Hongyan Li & Qiyao Shang & Zhijin Ju & Gongxun Lu & Jiale Zheng & Ouwei Sheng & Xinyong Tao, 2023. "A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yanhua Zhang & Rui Qiao & Qiaona Nie & Peiyu Zhao & Yong Li & Yunfei Hong & Shengjie Chen & Chao Li & Baoyu Sun & Hao Fan & Junkai Deng & Jingying Xie & Feng Liu & Jiangxuan Song, 2024. "Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:10:d:10.1038_s41560-021-00917-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.