IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31158-x.html
   My bibliography  Save this article

Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics

Author

Listed:
  • Mao-Hua Zhang

    (Tsinghua University
    Technical University of Darmstadt)

  • Chen Shen

    (Technical University of Darmstadt)

  • Changhao Zhao

    (Technical University of Darmstadt)

  • Mian Dai

    (Technical University of Darmstadt)

  • Fang-Zhou Yao

    (Yangtze Delta Region Institute of Tsinghua University)

  • Bo Wu

    (Southwest Minzu University)

  • Jian Ma

    (Southwest Minzu University)

  • Hu Nan

    (Xi’an Jiaotong University)

  • Dawei Wang

    (Xi’an Jiaotong University)

  • Qibin Yuan

    (Shaanxi University of Science and Technology)

  • Lucas Lemos Silva

    (Karlsruhe Institute of Technology)

  • Lovro Fulanović

    (Technical University of Darmstadt)

  • Alexander Schökel

    (Deutsches Elektronen-Synchrotron DESY)

  • Peitao Liu

    (Chinese Academy of Sciences)

  • Hongbin Zhang

    (Technical University of Darmstadt)

  • Jing-Feng Li

    (Tsinghua University)

  • Nan Zhang

    (Xi’an Jiaotong University)

  • Ke Wang

    (Tsinghua University
    Wuzhen Laboratory)

  • Jürgen Rödel

    (Technical University of Darmstadt)

  • Manuel Hinterstein

    (Karlsruhe Institute of Technology)

Abstract

Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO3 solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V−1 along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.

Suggested Citation

  • Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31158-x
    DOI: 10.1038/s41467-022-31158-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31158-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31158-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Uehara & S. Mori & C. H. Chen & S.-W. Cheong, 1999. "Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites," Nature, Nature, vol. 399(6736), pages 560-563, June.
    2. Z. Kutnjak & J. Petzelt & R. Blinc, 2006. "The giant electromechanical response in ferroelectric relaxors as a critical phenomenon," Nature, Nature, vol. 441(7096), pages 956-959, June.
    3. Xian-Kui Wei & Sergei Prokhorenko & Bi-Xia Wang & Zenghui Liu & Yu-Juan Xie & Yousra Nahas & Chun-Lin Jia & Rafal E. Dunin-Borkowski & Joachim Mayer & Laurent Bellaiche & Zuo-Guang Ye, 2021. "Ferroelectric phase-transition frustration near a tricritical composition point," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Yasuyoshi Saito & Hisaaki Takao & Toshihiko Tani & Tatsuhiko Nonoyama & Kazumasa Takatori & Takahiko Homma & Toshiatsu Nagaya & Masaya Nakamura, 2004. "Lead-free piezoceramics," Nature, Nature, vol. 432(7013), pages 84-87, November.
    5. N. Zhang & H. Yokota & A. M. Glazer & Z. Ren & D. A. Keen & D. S. Keeble & P. A. Thomas & Z.-G. Ye, 2014. "The missing boundary in the phase diagram of PbZr1−xTixO3," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    6. Huaxiang Fu & Ronald E. Cohen, 2000. "Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics," Nature, Nature, vol. 403(6767), pages 281-283, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinzhu Zou & Miao Song & Xuefan Zhou & Wenchao Chi & Tongxin Wei & Kechao Zhou & Dou Zhang & Shujun Zhang, 2024. "Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Bo Wu & Lin Zhao & Jiaqing Feng & Yiting Zhang & Xilong Song & Jian Ma & Hong Tao & Ze Xu & Yi-Xuan Liu & Shidong Wang & Jingtong Lu & Fangyuan Zhu & Bing Han & Ke Wang, 2024. "Contribution of irreversible non-180° domain to performance for multiphase coexisted potassium sodium niobate ceramics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Bo Wu & Huijing Zheng & Yan-Qi Wu & Zhicheng Huang & Hao-Cheng Thong & Hong Tao & Jian Ma & Chunlin Zhao & Ze Xu & Yi-Xuan Liu & Zhipeng Xing & Naixin Liang & Fang-Zhou Yao & Chao-Feng Wu & Ke Wang & , 2024. "Origin of ultrahigh-performance barium titanate-based piezoelectrics: Stannum-induced intrinsic and extrinsic contributions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Xuemu Li & Zhuomin Zhang & Zehua Peng & Xiaodong Yan & Ying Hong & Shiyuan Liu & Weikang Lin & Yao Shan & Yuanyi Wang & Zhengbao Yang, 2023. "Fast and versatile electrostatic disc microprinting for piezoelectric elements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Shuo Sun & Zhen Han & Wei Liu & Qiuying Xia & Liang Xue & Xincheng Lei & Teng Zhai & Dong Su & Hui Xia, 2023. "Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zhao & Feng Yang & Han Jiang & Guandao Gao, 2024. "Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    3. Fangping Zhuo & Xiandong Zhou & Shuang Gao & Marion Höfling & Felix Dietrich & Pedro B. Groszewicz & Lovro Fulanović & Patrick Breckner & Andreas Wohninsland & Bai-Xiang Xu & Hans-Joachim Kleebe & Xia, 2022. "Anisotropic dislocation-domain wall interactions in ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Liya Yang & Houbing Huang & Zengzhe Xi & Limei Zheng & Shiqi Xu & Gang Tian & Yuzhi Zhai & Feifei Guo & Lingping Kong & Yonggang Wang & Weiming Lü & Long Yuan & Minglei Zhao & Haiwu Zheng & Gang Liu, 2022. "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Wei-Tin Chen & Chin-Wei Wang & Ching-Chia Cheng & Yu-Chun Chuang & Arkadiy Simonov & Nicholas C. Bristowe & Mark S. Senn, 2021. "Striping of orbital-order with charge-disorder in optimally doped manganites," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Jaume Meseguer-Sánchez & Catalin Popescu & José Luis García-Muñoz & Hubertus Luetkens & Grigol Taniashvili & Efrén Navarro-Moratalla & Zurab Guguchia & Elton J. G. Santos, 2021. "Coexistence of structural and magnetic phases in van der Waals magnet CrI3," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Jiasheng Liang & Jin Liu & Pengfei Qiu & Chen Ming & Zhengyang Zhou & Zhiqiang Gao & Kunpeng Zhao & Lidong Chen & Xun Shi, 2023. "Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Zhengqian Fu & Xuefeng Chen & Henchang Nie & Yanyu Liu & Jiawang Hong & Tengfei Hu & Ziyi Yu & Zhenqin Li & Linlin Zhang & Heliang Yao & Yuanhua Xia & Zhipeng Gao & Zheyi An & Nan Zhang & Fei Cao & He, 2022. "Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Chen Lin & Zijun Zhang & Zhenbang Dai & Mengjiao Wu & Shi Liu & Jialu Chen & Chenqiang Hua & Yunhao Lu & Fei Zhang & Hongbo Lou & Hongliang Dong & Qiaoshi Zeng & Jing Ma & Xiaodong Pi & Dikui Zhou & Y, 2023. "Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Hao Cheng & Peijie Jiao & Jian Wang & Mingkai Qing & Yu Deng & Jun-Ming Liu & Laurent Bellaiche & Di Wu & Yurong Yang, 2024. "Tunable and parabolic piezoelectricity in hafnia under epitaxial strain," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. He Qi & Tengfei Hu & Shiqing Deng & Hui Liu & Zhengqian Fu & Jun Chen, 2023. "Giant dynamic electromechanical response via field driven pseudo-ergodicity in nonergodic relaxors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Jinzhu Zou & Miao Song & Xuefan Zhou & Wenchao Chi & Tongxin Wei & Kechao Zhou & Dou Zhang & Shujun Zhang, 2024. "Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Wei Feng & Bingcheng Luo & Shuaishuai Bian & Enke Tian & Zili Zhang & Ahmed Kursumovic & Judith L. MacManus-Driscoll & Xiaohui Wang & Longtu Li, 2022. "Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Moaz Waqar & Haijun Wu & Khuong Phuong Ong & Huajun Liu & Changjian Li & Ping Yang & Wenjie Zang & Weng Heng Liew & Caozheng Diao & Shibo Xi & David J. Singh & Qian He & Kui Yao & Stephen J. Pennycook, 2022. "Origin of giant electric-field-induced strain in faulted alkali niobate films," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Ke Zhang & Pan Gao & Chang Liu & Xin Chen & Xinye Huang & Yongping Pu & Zenghui Liu, 2022. "Structural Evolution and Enhanced Piezoelectric Activity in Novel Lead-Free BaTiO 3 -Ca(Sn 1/2 Zr 1/2 )O 3 Solid Solutions," Energies, MDPI, vol. 15(20), pages 1-11, October.
    19. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31158-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.