IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49266-1.html
   My bibliography  Save this article

Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling

Author

Listed:
  • Yang Zhao

    (Southeast University
    Southeast University)

  • Feng Yang

    (Southeast University
    Southeast University)

  • Han Jiang

    (Southeast University
    Southeast University)

  • Guandao Gao

    (Nanjing University
    Nanjing University)

Abstract

Piezoceramic membranes have emerged as a prominent solution for membrane fouling control. However, the prevalent use of toxic lead and limitations of vibration-based anti-fouling mechanism impede their wider adoption in water treatment. This study introduces a Mn/BaTiO3 piezoceramic membrane, demonstrating a promising in-situ anti-fouling efficacy and mechanism insights. When applied to an Alternating Current at a resonant frequency of 20 V, 265 kHz, the membrane achieves optimal vibration, effectively mitigating various foulants such as high-concentration oil (2500 ppm, including real industrial oil wastewater), bacteria and different charged inorganic colloidal particles, showing advantages over other reported piezoceramic membranes. Importantly, our findings suggest that the built-in ultrasonic vibration of piezoceramic membranes can generate reactive oxygen species. This offers profound insights into the distinct anti-fouling processes for organic and inorganic wastewater, supplementing and unifying the traditional singular vibrational anti-fouling mechanism of piezoceramic membranes, and potentially propelling the development of piezoelectric catalytic membranes.

Suggested Citation

  • Yang Zhao & Feng Yang & Han Jiang & Guandao Gao, 2024. "Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49266-1
    DOI: 10.1038/s41467-024-49266-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49266-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49266-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Wang & Xinrong Wen & Yanmin Jia & Ming Huang & Feifei Wang & Xuehui Zhang & Yunyang Bai & Guoliang Yuan & Yaojin Wang, 2020. "Piezo-catalysis for nondestructive tooth whitening," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Yang Zhao & Yuna Gu & Bin Liu & Yujie Yan & Chao Shan & Jian Guo & Shantao Zhang & Chad D. Vecitis & Guandao Gao, 2022. "Pulsed hydraulic-pressure-responsive self-cleaning membrane," Nature, Nature, vol. 608(7921), pages 69-73, August.
    3. Yasuyoshi Saito & Hisaaki Takao & Toshihiko Tani & Tatsuhiko Nonoyama & Kazumasa Takatori & Takahiko Homma & Toshiatsu Nagaya & Masaya Nakamura, 2004. "Lead-free piezoceramics," Nature, Nature, vol. 432(7013), pages 84-87, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuomin Zhang & Xuemu Li & Zehua Peng & Xiaodong Yan & Shiyuan Liu & Ying Hong & Yao Shan & Xiaote Xu & Lihan Jin & Bingren Liu & Xinyu Zhang & Yu Chai & Shujun Zhang & Alex K.-Y. Jen & Zhengbao Yang, 2023. "Active self-assembly of piezoelectric biomolecular films via synergistic nanoconfinement and in-situ poling," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    3. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yang Wang & Shuhao Wang & Yanze Meng & Zhen Liu & Dijie Li & Yunyang Bai & Guoliang Yuan & Yaojin Wang & Xuehui Zhang & Xiaoguang Li & Xuliang Deng, 2022. "Pyro-catalysis for tooth whitening via oral temperature fluctuation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Jinxin Liu & Qinghao Jin & Junfeng Geng & Jianxin Xia & Yanhong Wu & Huiying Chen, 2023. "Fast Capture and Efficient Removal of Bloom Algae Based on Improved Dielectrophoresis Process," IJERPH, MDPI, vol. 20(1), pages 1-12, January.
    6. Jiasheng Liang & Jin Liu & Pengfei Qiu & Chen Ming & Zhengyang Zhou & Zhiqiang Gao & Kunpeng Zhao & Lidong Chen & Xun Shi, 2023. "Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jia-Qi Luo & Hai-Feng Lu & Yi-Jing Nie & Yu-Hang Zhou & Chang-Feng Wang & Zhi-Xu Zhang & Da-Wei Fu & Yi Zhang, 2024. "Porous flexible molecular-based piezoelectric composite achieves milliwatt output power density," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Jinzhu Zou & Miao Song & Xuefan Zhou & Wenchao Chi & Tongxin Wei & Kechao Zhou & Dou Zhang & Shujun Zhang, 2024. "Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Wei Feng & Bingcheng Luo & Shuaishuai Bian & Enke Tian & Zili Zhang & Ahmed Kursumovic & Judith L. MacManus-Driscoll & Xiaohui Wang & Longtu Li, 2022. "Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Xiaoyang Pan & Xuhui Yang & Maoqing Yu & Xiaoxiao Lu & Hao Kang & Min-Quan Yang & Qingrong Qian & Xiaojing Zhao & Shijing Liang & Zhenfeng Bian, 2023. "2D MXenes polar catalysts for multi-renewable energy harvesting applications," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Wei Fan & Ruixin Lei & Hao Dou & Zheng Wu & Linlin Lu & Shujuan Wang & Xuqing Liu & Weichun Chen & Mashallah Rezakazemi & Tejraj M. Aminabhavi & Yi Li & Shengbo Ge, 2024. "Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Ziming Wang & Andy Berbille & Yawei Feng & Site Li & Laipan Zhu & Wei Tang & Zhong Lin Wang, 2022. "Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49266-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.