IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52031-z.html
   My bibliography  Save this article

Origin of ultrahigh-performance barium titanate-based piezoelectrics: Stannum-induced intrinsic and extrinsic contributions

Author

Listed:
  • Bo Wu

    (Southwest Minzu University
    Tsinghua University)

  • Huijing Zheng

    (Southwest Minzu University)

  • Yan-Qi Wu

    (Tsinghua University)

  • Zhicheng Huang

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Hao-Cheng Thong

    (Tsinghua University)

  • Hong Tao

    (Southwest Minzu University)

  • Jian Ma

    (Southwest Minzu University)

  • Chunlin Zhao

    (Fuzhou University)

  • Ze Xu

    (Tsinghua University)

  • Yi-Xuan Liu

    (Tsinghua University)

  • Zhipeng Xing

    (Tsinghua University)

  • Naixin Liang

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Fang-Zhou Yao

    (Wuzhen Laboratory)

  • Chao-Feng Wu

    (Yangtze Delta Region Institute of Tsinghua University)

  • Ke Wang

    (Tsinghua University)

  • Bing Han

    (Peking University School and Hospital of Stomatology)

Abstract

Despite the pivotal role of stannum doping in achieving ultrahigh piezoelectric performance in barium titanate-based ceramics, the fundamental mechanisms underlying this enhancement remain elusive. Here, we introduce a single variable nonstoichiometric stannum strategy in lead-free barium titanate-based ceramics with giant piezoelectricity, revealing that stannum doping contributes intrinsically and extrinsically to enhance piezoelectricity. Density functional theory calculations elucidate the intrinsic enhancement of polarization arising from lattice distortion and increased space for titanium-oxygen bonds induced by optimal stannum doping, which is corroborated by Rayleigh analysis. A phase transition from ferroelectric multiphase coexistence to paraelectric phase is observed, alongside a rapid miniaturized and eventually disappeared domains with increasing stannum doping. This evolution in phase structure and domain configuration induces a nearly vanishing polarization anisotropy and low domain wall energy, facilitating easy polarization rotation and domain wall motion, thereby significantly contributing to the extrinsic piezoelectric response. Consequently, the origins of ultrahigh performance can be attributed to the synergistic effect of stannum-induced intrinsic and extrinsic contributions in barium titanate-based ceramics. This study provides fundamental insights into the role of doping elements and offers guidance for the design of high-performance piezoelectrics.

Suggested Citation

  • Bo Wu & Huijing Zheng & Yan-Qi Wu & Zhicheng Huang & Hao-Cheng Thong & Hong Tao & Jian Ma & Chunlin Zhao & Ze Xu & Yi-Xuan Liu & Zhipeng Xing & Naixin Liang & Fang-Zhou Yao & Chao-Feng Wu & Ke Wang & , 2024. "Origin of ultrahigh-performance barium titanate-based piezoelectrics: Stannum-induced intrinsic and extrinsic contributions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52031-z
    DOI: 10.1038/s41467-024-52031-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52031-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52031-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Bo Wu & Lin Zhao & Jiaqing Feng & Yiting Zhang & Xilong Song & Jian Ma & Hong Tao & Ze Xu & Yi-Xuan Liu & Shidong Wang & Jingtong Lu & Fangyuan Zhu & Bing Han & Ke Wang, 2024. "Contribution of irreversible non-180° domain to performance for multiphase coexisted potassium sodium niobate ceramics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuemu Li & Zhuomin Zhang & Zehua Peng & Xiaodong Yan & Ying Hong & Shiyuan Liu & Weikang Lin & Yao Shan & Yuanyi Wang & Zhengbao Yang, 2023. "Fast and versatile electrostatic disc microprinting for piezoelectric elements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Shuo Sun & Zhen Han & Wei Liu & Qiuying Xia & Liang Xue & Xincheng Lei & Teng Zhai & Dong Su & Hui Xia, 2023. "Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Bo Wu & Lin Zhao & Jiaqing Feng & Yiting Zhang & Xilong Song & Jian Ma & Hong Tao & Ze Xu & Yi-Xuan Liu & Shidong Wang & Jingtong Lu & Fangyuan Zhu & Bing Han & Ke Wang, 2024. "Contribution of irreversible non-180° domain to performance for multiphase coexisted potassium sodium niobate ceramics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Jinzhu Zou & Miao Song & Xuefan Zhou & Wenchao Chi & Tongxin Wei & Kechao Zhou & Dou Zhang & Shujun Zhang, 2024. "Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yuqi Jiang & Mao-Hua Zhang & Chao-Feng Wu & Ze Xu & Zhao Li & Jing-Tong Lu & Hao-Feng Huang & Jia-Jun Zhou & Yi-Xuan Liu & Tianhang Zhou & Wen Gong & Ke Wang, 2024. "Low-field-driven large strain in lead zirconate titanium-based piezoceramics incorporating relaxor lead magnesium niobate for actuation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52031-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.