IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54842-6.html
   My bibliography  Save this article

Deciphering the atomistic mechanism underlying highly tunable piezoelectric properties in perovskite ferroelectrics via transition metal doping

Author

Listed:
  • Peng Tan

    (Harbin Institute of Technology)

  • Xiaolin Huang

    (Harbin Institute of Technology)

  • Yu Wang

    (Harbin Institute of Technology)

  • Bohan Xing

    (Harbin Institute of Technology)

  • Jiajie Zhang

    (Xi’an Jiaotong University)

  • Chengpeng Hu

    (Harbin Institute of Technology)

  • Xiangda Meng

    (Harbin Institute of Technology)

  • Xiaodong Xu

    (Harbin Institute of Technology)

  • Danyang Li

    (Harbin Institute of Technology)

  • Xianjie Wang

    (Harbin Institute of Technology)

  • Xin Zhou

    (Harbin Institute of Technology)

  • Nan Zhang

    (Xi’an Jiaotong University)

  • Qisheng Wang

    (Chinese Academy of Sciences)

  • Fei Li

    (Xi’an Jiaotong University)

  • Shujun Zhang

    (University of Wollongong)

  • Hao Tian

    (Harbin Institute of Technology)

Abstract

Piezoelectricity, a fundamental property of perovskite ferroelectrics, endows the materials at the heart of electromechanical systems spanning from macro to micro/nano scales. Defect engineering strategies, particularly involving heterovalent trace impurities and derived vacancies, hold great potential for adjusting piezoelectric performance. Despite the prevalent use of defect engineering for modification, a comprehensive understanding of the specific features that positively impact material properties is still lacking, this knowledge gap impedes the advancement of a universally applicable defect selection and design strategy. In this work, we select perovskite KTa1−xNbxO3 single crystals with orthorhombic phase as the matrix and introduce Fe and Mn elements, which are commonly used in “hard” ferroelectrics as dopants. We investigate how transition-metal doping modifies piezoelectric properties from the perspective of intrinsic polarization behaviors. Interestingly, despite both being doped into the B-site as an acceptor, Mn doping enhances the local structural heterogeneity, greatly bolstering the piezoelectric coefficient beyond 1000 pC/N, whereas Fe doping tends to stabilize the polarization, leading to a substantial improvement in the mechanical quality factor up to 700. This work deciphers the diverse impacts of transition metal impurities on regulating polarization structures and modifying piezoelectric properties, providing a good paradigm for strategically designing perovskite ferroelectrics.

Suggested Citation

  • Peng Tan & Xiaolin Huang & Yu Wang & Bohan Xing & Jiajie Zhang & Chengpeng Hu & Xiangda Meng & Xiaodong Xu & Danyang Li & Xianjie Wang & Xin Zhou & Nan Zhang & Qisheng Wang & Fei Li & Shujun Zhang & H, 2024. "Deciphering the atomistic mechanism underlying highly tunable piezoelectric properties in perovskite ferroelectrics via transition metal doping," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54842-6
    DOI: 10.1038/s41467-024-54842-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54842-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54842-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuai Yang & Jinglei Li & Yao Liu & Mingwen Wang & Liao Qiao & Xiangyu Gao & Yunfei Chang & Hongliang Du & Zhuo Xu & Shujun Zhang & Fei Li, 2021. "Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. S. Das & Y. L. Tang & Z. Hong & M. A. P. Gonçalves & M. R. McCarter & C. Klewe & K. X. Nguyen & F. Gómez-Ortiz & P. Shafer & E. Arenholz & V. A. Stoica & S.-L. Hsu & B. Wang & C. Ophus & J. F. Liu & C, 2019. "Observation of room-temperature polar skyrmions," Nature, Nature, vol. 568(7752), pages 368-372, April.
    3. Huaxiang Fu & Ronald E. Cohen, 2000. "Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics," Nature, Nature, vol. 403(6767), pages 281-283, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sixu Wang & Wei Li & Chenguang Deng & Zijian Hong & Han-Bin Gao & Xiaolong Li & Yueliang Gu & Qiang Zheng & Yongjun Wu & Paul G. Evans & Jing-Feng Li & Ce-Wen Nan & Qian Li, 2024. "Giant electric field-induced second harmonic generation in polar skyrmions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Ibukun Olaniyan & Iurii Tikhonov & Valentin Väinö Hevelke & Sven Wiesner & Leifeng Zhang & Anna Razumnaya & Nikolay Cherkashin & Sylvie Schamm-Chardon & Igor Lukyanchuk & Dong-Jik Kim & Catherine Dubo, 2024. "Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Liya Yang & Houbing Huang & Zengzhe Xi & Limei Zheng & Shiqi Xu & Gang Tian & Yuzhi Zhai & Feifei Guo & Lingping Kong & Yonggang Wang & Weiming Lü & Long Yuan & Minglei Zhao & Haiwu Zheng & Gang Liu, 2022. "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Hangfeng Zhang & Zilong Li & Yichen Wang & A. Dominic Fortes & Theo Graves Saunders & Yang Hao & Isaac Abrahams & Haixue Yan & Lei Su, 2025. "Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Na Wang & Zhong Shen & Wang Luo & Hua-Kai Li & Ze-Jiang Xu & Chao Shi & Heng-Yun Ye & Shuai Dong & Le-Ping Miao, 2024. "Noncollinear ferroelectric and screw-type antiferroelectric phases in a metal-free hybrid molecular crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Jipdi, M.N. & Vubangsi, M. & Tchoffo, M. & Fai, L.C., 2024. "About biskyrmion formation in antiferromagnetic clusters: Biferron, bisoliton vs biskyrmion," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    9. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Vivasha Govinden & Peiran Tong & Xiangwei Guo & Qi Zhang & Sukriti Mantri & Mohammad Moein Seyfouri & Sergei Prokhorenko & Yousra Nahas & Yongjun Wu & Laurent Bellaiche & Tulai Sun & He Tian & Zijian , 2023. "Ferroelectric solitons crafted in epitaxial bismuth ferrite superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Guangdi Feng & Qiuxiang Zhu & Xuefeng Liu & Luqiu Chen & Xiaoming Zhao & Jianquan Liu & Shaobing Xiong & Kexiang Shan & Zhenzhong Yang & Qinye Bao & Fangyu Yue & Hui Peng & Rong Huang & Xiaodong Tang , 2024. "A ferroelectric fin diode for robust non-volatile memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Chaehwa Jeong & Juhyeok Lee & Hyesung Jo & Jaewhan Oh & Hionsuck Baik & Kyoung-June Go & Junwoo Son & Si-Young Choi & Sergey Prosandeev & Laurent Bellaiche & Yongsoo Yang, 2024. "Revealing the three-dimensional arrangement of polar topology in nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Mengfan Guo & Erxiang Xu & Houbing Huang & Changqing Guo & Hetian Chen & Shulin Chen & Shan He & Le Zhou & Jing Ma & Zhonghui Shen & Ben Xu & Di Yi & Peng Gao & Ce-Wen Nan & Neil. D. Mathur & Yang She, 2024. "Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Longju Yu & Hong Jian Zhao & Peng Chen & Laurent Bellaiche & Yanming Ma, 2023. "The anti-symmetric and anisotropic symmetric exchange interactions between electric dipoles in hafnia," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Daniel Bennett & Gaurav Chaudhary & Robert-Jan Slager & Eric Bousquet & Philippe Ghosez, 2023. "Polar meron-antimeron networks in strained and twisted bilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Peter Meisenheimer & Hongrui Zhang & David Raftrey & Xiang Chen & Yu-Tsun Shao & Ying-Ting Chan & Reed Yalisove & Rui Chen & Jie Yao & Mary C. Scott & Weida Wu & David A. Muller & Peter Fischer & Robe, 2023. "Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jing Wang & Deshan Liang & Jing Ma & Yuanyuan Fan & Ji Ma & Hasnain Mehdi Jafri & Huayu Yang & Qinghua Zhang & Yue Wang & Changqing Guo & Shouzhe Dong & Di Liu & Xueyun Wang & Jiawang Hong & Nan Zhang, 2023. "Polar Solomon rings in ferroelectric nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Yuqi Jiang & Mao-Hua Zhang & Chao-Feng Wu & Ze Xu & Zhao Li & Jing-Tong Lu & Hao-Feng Huang & Jia-Jun Zhou & Yi-Xuan Liu & Tianhang Zhou & Wen Gong & Ke Wang, 2024. "Low-field-driven large strain in lead zirconate titanium-based piezoceramics incorporating relaxor lead magnesium niobate for actuation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54842-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.