IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56920-9.html
   My bibliography  Save this article

Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain

Author

Listed:
  • Hangfeng Zhang

    (Queen Mary University of London)

  • Zilong Li

    (Queen Mary University of London)

  • Yichen Wang

    (Queen Mary University of London)

  • A. Dominic Fortes

    (Rutherford Appleton Laboratory)

  • Theo Graves Saunders

    (Queen Mary University of London)

  • Yang Hao

    (Queen Mary University of London)

  • Isaac Abrahams

    (Queen Mary University of London)

  • Haixue Yan

    (Queen Mary University of London)

  • Lei Su

    (Queen Mary University of London)

Abstract

The reverse piezoelectric effect allows for the conversion of an electrical input signal into mechanical displacement and forms the basis for the operation of positioners and actuators. Addressing the practical need for cost-effective sensitive materials, we introduce erbium-doped lead magnesium niobium titanate ceramics which exhibit exceptionally high strain (3.19% bipolar and 0.8% unipolar) under a very low applied field of 2 kV mm−1, resulting in record-breaking piezoelectric coefficients (d33* values of 15,950 and 4014 pm V−1, respectively). These exceptional properties stem from a combination of factors including the sensitivity of polar nanoregions to the applied field in this relaxor ferroelectric system, the thickness of the sample, and the energetic availability of polymorphs with different polar structures where a change in polarisation direction occurs at the field induced phase transition. Surpassing the performance of single crystal materials, our findings establish a benchmark in piezoelectric performance with implications for many diverse applications.

Suggested Citation

  • Hangfeng Zhang & Zilong Li & Yichen Wang & A. Dominic Fortes & Theo Graves Saunders & Yang Hao & Isaac Abrahams & Haixue Yan & Lei Su, 2025. "Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56920-9
    DOI: 10.1038/s41467-025-56920-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56920-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56920-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaorui Qiu & Bo Wang & Nan Zhang & Shujun Zhang & Jinfeng Liu & David Walker & Yu Wang & Hao Tian & Thomas R. Shrout & Zhuo Xu & Long-Qing Chen & Fei Li, 2020. "Transparent ferroelectric crystals with ultrahigh piezoelectricity," Nature, Nature, vol. 577(7790), pages 350-354, January.
    2. Hongjie Hu & Hao Huang & Mohan Li & Xiaoxiang Gao & Lu Yin & Ruixiang Qi & Ray S. Wu & Xiangjun Chen & Yuxiang Ma & Keren Shi & Chenghai Li & Timothy M. Maus & Brady Huang & Chengchangfeng Lu & Muyang, 2023. "A wearable cardiac ultrasound imager," Nature, Nature, vol. 613(7945), pages 667-675, January.
    3. Yasuyoshi Saito & Hisaaki Takao & Toshihiko Tani & Tatsuhiko Nonoyama & Kazumasa Takatori & Takahiko Homma & Toshiatsu Nagaya & Masaya Nakamura, 2004. "Lead-free piezoceramics," Nature, Nature, vol. 432(7013), pages 84-87, November.
    4. Huaxiang Fu & Ronald E. Cohen, 2000. "Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics," Nature, Nature, vol. 403(6767), pages 281-283, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Fangping Zhuo & Xiandong Zhou & Shuang Gao & Marion Höfling & Felix Dietrich & Pedro B. Groszewicz & Lovro Fulanović & Patrick Breckner & Andreas Wohninsland & Bai-Xiang Xu & Hans-Joachim Kleebe & Xia, 2022. "Anisotropic dislocation-domain wall interactions in ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Chaorui Qiu & Zhiqiang Zhang & Zhiqiang Xu & Liao Qiao & Li Ning & Shujun Zhang & Min Su & Weichang Wu & Kexin Song & Zhuo Xu & Long-Qing Chen & Hairong Zheng & Chengbo Liu & Weibao Qiu & Fei Li, 2024. "Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. J. W. Lee & K. Eom & T. R. Paudel & B. Wang & H. Lu & H. X. Huyan & S. Lindemann & S. Ryu & H. Lee & T. H. Kim & Y. Yuan & J. A. Zorn & S. Lei & W. P. Gao & T. Tybell & V. Gopalan & X. Q. Pan & A. Gru, 2021. "In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    7. Alp Timucin Toymus & Umut Can Yener & Emine Bardakci & Özgür Deniz Temel & Ersin Koseoglu & Dincay Akcoren & Burak Eminoglu & Mohsin Ali & Rasim Kilic & Tufan Tarcan & Levent Beker, 2024. "An integrated and flexible ultrasonic device for continuous bladder volume monitoring," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Liu, Jiaping & Qi, Yu & Ke, Juyang & Zhao, Yicong & Li, Xiaoqing & Yu, Yang & Sun, Xuyang & Guo, Rui, 2024. "Mechanically programmable substrate enable highly stretchable solar cell arrays for self-powered electronic skin," Applied Energy, Elsevier, vol. 367(C).
    10. Ruian Zhang & Chen Lin & Hongliang Dong & Haojie Han & Yu Song & Yiran Sun & Yue Wang & Zijun Zhang & Xiaohe Miao & Yongjun Wu & Zhe Ren & Qiaoshi Zeng & Houbing Huang & Jing Ma & He Tian & Zhaohui Re, 2025. "Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Lisha Liu & Jiaojiao Yi & Kun Xu & Zhen Liu & Mingmeng Tang & Le Dai & Xuan Gao & Yang Liu & Shuhao Wang & Zhang Zhang & Liang Shu & Jing-Feng Li & Shujun Zhang & Yaojin Wang, 2024. "High piezoelectric property with exceptional stability in self-poled ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Liya Yang & Houbing Huang & Zengzhe Xi & Limei Zheng & Shiqi Xu & Gang Tian & Yuzhi Zhai & Feifei Guo & Lingping Kong & Yonggang Wang & Weiming Lü & Long Yuan & Minglei Zhao & Haiwu Zheng & Gang Liu, 2022. "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Xun Zhao & Yihao Zhou & William Kwak & Aaron Li & Shaolei Wang & Marklin Dallenger & Songyue Chen & Yuqi Zhang & Allison Lium & Jun Chen, 2024. "A reconfigurable and conformal liquid sensor for ambulatory cardiac monitoring," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Jian Li & Shengxin Jia & Dengfeng Li & Lung Chow & Qiang Zhang & Yiyuan Yang & Xiao Bai & Qingao Qu & Yuyu Gao & Zhiyuan Li & Zongze Li & Rui Shi & Binbin Zhang & Ya Huang & Xinyu Pan & Yue Hu & Zhan , 2024. "Wearable bio-adhesive metal detector array (BioMDA) for spinal implants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    17. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Chang-Chun Fan & Cheng-Dong Liu & Bei-Dou Liang & Wei Wang & Ming-Liang Jin & Chao-Yang Chai & Chang-Qing Jing & Tong-Yu Ju & Xiang-Bin Han & Wen Zhang, 2024. "Tuning ferroelectric phase transition temperature by enantiomer fraction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Yuanjie Su & Weixiong Li & Xiaoxing Cheng & Yihao Zhou & Shuai Yang & Xu Zhang & Chunxu Chen & Tiannan Yang & Hong Pan & Guangzhong Xie & Guorui Chen & Xun Zhao & Xiao Xiao & Bei Li & Huiling Tai & Ya, 2022. "High-performance piezoelectric composites via β phase programming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Bin Yang & Haonan Wang & Jilie Kong & Xueen Fang, 2024. "Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56920-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.