IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55411-7.html
   My bibliography  Save this article

Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability

Author

Listed:
  • Ruian Zhang

    (Zhejiang University)

  • Chen Lin

    (Zhejiang University
    Hangzhou Innovation Institute of Beihang University)

  • Hongliang Dong

    (Center for High Pressure Science and Technology Advanced Research)

  • Haojie Han

    (Tsinghua University)

  • Yu Song

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Yiran Sun

    (Zhejiang University)

  • Yue Wang

    (Tsinghua University)

  • Zijun Zhang

    (Zhejiang University)

  • Xiaohe Miao

    (Westlake University)

  • Yongjun Wu

    (Zhejiang University)

  • Zhe Ren

    (Chinese Academy of Sciences)

  • Qiaoshi Zeng

    (Center for High Pressure Science and Technology Advanced Research
    Institute for Shanghai Advanced Research in Physical Sciences (SHARPS))

  • Houbing Huang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Jing Ma

    (Tsinghua University)

  • He Tian

    (Zhejiang University
    Zhejiang University)

  • Zhaohui Ren

    (Zhejiang University
    Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering)

  • Gaorong Han

    (Zhejiang University)

Abstract

The composition in ferroelectric oxide films is decisive for optimizing properties and device performances. Controlling a composition distribution in these films by a facile approach is thus highly desired. In this work, we report a solution epitaxy of PbZrxTi1−xO3 films with a continuous gradient of Zr concentration, realized by a competitive growth at ~220 °C. These intriguing films demonstrate a frequency-independent of dielectric permittivity below 100 kHz from room-temperature to 280 °C. In particular, the permittivity of the films can be largely regulated from 100 to 50 by slightly varying Zr compositional gradient. These results were revealed to arise from a built-in electric field within the films due to a coupling between the composition gradient and unidirectional spontaneous polarization. Our findings may pave a way to prepare compositionally-graded ferroelectric films by a solution approach, which is promising for practical dielectric, pyroelectric and photoelectric technical applications.

Suggested Citation

  • Ruian Zhang & Chen Lin & Hongliang Dong & Haojie Han & Yu Song & Yiran Sun & Yue Wang & Zijun Zhang & Xiaohe Miao & Yongjun Wu & Zhe Ren & Qiaoshi Zeng & Houbing Huang & Jing Ma & He Tian & Zhaohui Re, 2025. "Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55411-7
    DOI: 10.1038/s41467-024-55411-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55411-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55411-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Narayani Choudhury & Laura Walizer & Sergey Lisenkov & L. Bellaiche, 2011. "Geometric frustration in compositionally modulated ferroelectrics," Nature, Nature, vol. 470(7335), pages 513-517, February.
    2. Anoop R. Damodaran & Shishir Pandya & Yubo Qi & Shang-Lin Hsu & Shi Liu & Christopher Nelson & Arvind Dasgupta & Peter Ercius & Colin Ophus & Liv R. Dedon & Josh C. Agar & Hongling Lu & Jialan Zhang &, 2017. "Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    3. Yasuyoshi Saito & Hisaaki Takao & Toshihiko Tani & Tatsuhiko Nonoyama & Kazumasa Takatori & Takahiko Homma & Toshiatsu Nagaya & Masaya Nakamura, 2004. "Lead-free piezoceramics," Nature, Nature, vol. 432(7013), pages 84-87, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zhao & Feng Yang & Han Jiang & Guandao Gao, 2024. "Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    3. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jiasheng Liang & Jin Liu & Pengfei Qiu & Chen Ming & Zhengyang Zhou & Zhiqiang Gao & Kunpeng Zhao & Lidong Chen & Xun Shi, 2023. "Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Chen Lin & Zijun Zhang & Zhenbang Dai & Mengjiao Wu & Shi Liu & Jialu Chen & Chenqiang Hua & Yunhao Lu & Fei Zhang & Hongbo Lou & Hongliang Dong & Qiaoshi Zeng & Jing Ma & Xiaodong Pi & Dikui Zhou & Y, 2023. "Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Jinzhu Zou & Miao Song & Xuefan Zhou & Wenchao Chi & Tongxin Wei & Kechao Zhou & Dou Zhang & Shujun Zhang, 2024. "Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Wei Feng & Bingcheng Luo & Shuaishuai Bian & Enke Tian & Zili Zhang & Ahmed Kursumovic & Judith L. MacManus-Driscoll & Xiaohui Wang & Longtu Li, 2022. "Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Li-Feng Zhu & Dong Liu & Xiaoming Shi & Shiqing Deng & Jiecheng Liu & Li-Yu Wei & Zi-Qi Yang & Qi Wang & Bo-Ping Zhang & Houbing Huang & Shujun Zhang & Jing-Feng Li, 2025. "Ultrahigh piezoelectric performances of (K,Na)NbO3 based ceramics enabled by structural flexibility and grain orientation," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    11. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55411-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.