IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31165-y.html
   My bibliography  Save this article

Near-ideal electromechanical coupling in textured piezoelectric ceramics

Author

Listed:
  • Yongke Yan

    (Pennsylvania State University)

  • Liwei D. Geng

    (Michigan Technological University)

  • Hairui Liu

    (Pennsylvania State University)

  • Haoyang Leng

    (Pennsylvania State University)

  • Xiaotian Li

    (Pennsylvania State University)

  • Yu U. Wang

    (Michigan Technological University)

  • Shashank Priya

    (Pennsylvania State University)

Abstract

Electromechanical coupling factor, k, of piezoelectric materials determines the conversion efficiency of mechanical to electrical energy or electrical to mechanical energy. Here, we provide an fundamental approach to design piezoelectric materials that provide near-ideal magnitude of k, via exploiting the electrocrystalline anisotropy through fabrication of grain-oriented or textured ceramics. Coupled phase field simulation and experimental investigation on textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics illustrate that k can reach same magnitude as that for a single crystal, far beyond the average value of traditional ceramics. To provide atomistic-scale understanding of our approach, we employ a theoretical model to determine the physical origin of k in perovskite ferroelectrics and find that strong covalent bonding between B-site cation and oxygen via d-p hybridization contributes most towards the magnitude of k. This demonstration of near-ideal k value in textured ceramics will have tremendous impact on design of ultra-wide bandwidth, high efficiency, high power density, and high stability piezoelectric devices.

Suggested Citation

  • Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31165-y
    DOI: 10.1038/s41467-022-31165-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31165-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31165-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuai Yang & Jinglei Li & Yao Liu & Mingwen Wang & Liao Qiao & Xiangyu Gao & Yunfei Chang & Hongliang Du & Zhuo Xu & Shujun Zhang & Fei Li, 2021. "Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Fei Li & Shujun Zhang & Tiannan Yang & Zhuo Xu & Nan Zhang & Gang Liu & Jianjun Wang & Jianli Wang & Zhenxiang Cheng & Zuo-Guang Ye & Jun Luo & Thomas R. Shrout & Long-Qing Chen, 2016. "The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    3. Yasuyoshi Saito & Hisaaki Takao & Toshihiko Tani & Tatsuhiko Nonoyama & Kazumasa Takatori & Takahiko Homma & Toshiatsu Nagaya & Masaya Nakamura, 2004. "Lead-free piezoceramics," Nature, Nature, vol. 432(7013), pages 84-87, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    2. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Liya Yang & Houbing Huang & Zengzhe Xi & Limei Zheng & Shiqi Xu & Gang Tian & Yuzhi Zhai & Feifei Guo & Lingping Kong & Yonggang Wang & Weiming Lü & Long Yuan & Minglei Zhao & Haiwu Zheng & Gang Liu, 2022. "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    5. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Zhengqian Fu & Xuefeng Chen & Henchang Nie & Yanyu Liu & Jiawang Hong & Tengfei Hu & Ziyi Yu & Zhenqin Li & Linlin Zhang & Heliang Yao & Yuanhua Xia & Zhipeng Gao & Zheyi An & Nan Zhang & Fei Cao & He, 2022. "Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Wei Feng & Bingcheng Luo & Shuaishuai Bian & Enke Tian & Zili Zhang & Ahmed Kursumovic & Judith L. MacManus-Driscoll & Xiaohui Wang & Longtu Li, 2022. "Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Sajid Husain & Isaac Harris & Guanhui Gao & Xinyan Li & Peter Meisenheimer & Chuqiao Shi & Pravin Kavle & Chi Hun Choi & Tae Yeon Kim & Deokyoung Kang & Piush Behera & Didier Perrodin & Hua Guo & Jame, 2024. "Low-temperature grapho-epitaxial La-substituted BiFeO3 on metallic perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Jiasheng Liang & Jin Liu & Pengfei Qiu & Chen Ming & Zhengyang Zhou & Zhiqiang Gao & Kunpeng Zhao & Lidong Chen & Xun Shi, 2023. "Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Ziwen Zhou & Shun Wang & Zhou Zhou & Yiqi Hu & Qiankun Li & Jinshuo Xue & Zhijian Feng & Qingyu Yan & Zhongshen Luo & Yuyan Weng & Rujun Tang & Xiaodong Su & Fengang Zheng & Kazuki Okamoto & Hiroshi F, 2023. "Unconventional polarization fatigue in van der Waals layered ferroelectric ionic conductor CuInP2S6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Jie Yin & Xiaoming Shi & Hong Tao & Zhi Tan & Xiang Lv & Xiangdong Ding & Jun Sun & Yang Zhang & Xingmin Zhang & Kui Yao & Jianguo Zhu & Houbing Huang & Haijun Wu & Shujun Zhang & Jiagang Wu, 2022. "Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Qian Wang & Yusheng Zhang & Haoyue Xue & Yushun Zeng & Gengxi Lu & Hongsong Fan & Laiming Jiang & Jiagang Wu, 2024. "Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31165-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.