IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44207-w.html
   My bibliography  Save this article

Tunable and parabolic piezoelectricity in hafnia under epitaxial strain

Author

Listed:
  • Hao Cheng

    (Nanjing University
    Nanjing University)

  • Peijie Jiao

    (Nanjing University
    Nanjing University)

  • Jian Wang

    (Nanjing University
    Nanjing University)

  • Mingkai Qing

    (Nanjing University
    Nanjing University)

  • Yu Deng

    (Nanjing University
    Nanjing University)

  • Jun-Ming Liu

    (Nanjing University)

  • Laurent Bellaiche

    (University of Arkansas)

  • Di Wu

    (Nanjing University
    Nanjing University)

  • Yurong Yang

    (Nanjing University
    Nanjing University)

Abstract

Piezoelectrics are a class of functional materials that have been extensively used for application in modern electro-mechanical and mechatronics technologies. The sign of longitudinal piezoelectric coefficients is typically positive but recently a few ferroelectrics, such as ferroelectric polymer poly(vinylidene fluoride) and van der Waals ferroelectric CuInP2S6, were experimentally found to have negative piezoelectricity. Here, using first-principles calculation and measurements, we show that the sign of the longitudinal linear piezoelectric coefficient of HfO2 can be tuned from positive to negative via epitaxial strain. Nonlinear and even parabolic piezoelectric behaviors are further found at tensile epitaxial strain. This parabolic piezoelectric behavior implies that the polarization decreases when increasing the magnitude of either compressive or tensile longitudinal strain, or, equivalently, that the strain increases when increasing the magnitude of electric field being either parallel or antiparallel to the direction of polarization. The unusual piezoelectric effects are from the chemical coordination of the active oxygen atoms. These striking piezoelectric features of positive and negative sign, as well as linear and parabolical behaviors, expand the current knowledge in piezoelectricity and broaden the potential of piezoelectric applications towards electro-mechanical and communications technology.

Suggested Citation

  • Hao Cheng & Peijie Jiao & Jian Wang & Mingkai Qing & Yu Deng & Jun-Ming Liu & Laurent Bellaiche & Di Wu & Yurong Yang, 2024. "Tunable and parabolic piezoelectricity in hafnia under epitaxial strain," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44207-w
    DOI: 10.1038/s41467-023-44207-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44207-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44207-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaorui Qiu & Bo Wang & Nan Zhang & Shujun Zhang & Jinfeng Liu & David Walker & Yu Wang & Hao Tian & Thomas R. Shrout & Zhuo Xu & Long-Qing Chen & Fei Li, 2020. "Transparent ferroelectric crystals with ultrahigh piezoelectricity," Nature, Nature, vol. 577(7790), pages 350-354, January.
    2. Z. Kutnjak & J. Petzelt & R. Blinc, 2006. "The giant electromechanical response in ferroelectric relaxors as a critical phenomenon," Nature, Nature, vol. 441(7096), pages 956-959, June.
    3. Alexander Kvasov & Leo J. McGilly & Jin Wang & Zhiyong Shi & Cosmin S. Sandu & Tomas Sluka & Alexander K. Tagantsev & Nava Setter, 2016. "Piezoelectric enhancement under negative pressure," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He Qi & Tengfei Hu & Shiqing Deng & Hui Liu & Zhengqian Fu & Jun Chen, 2023. "Giant dynamic electromechanical response via field driven pseudo-ergodicity in nonergodic relaxors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. J. W. Lee & K. Eom & T. R. Paudel & B. Wang & H. Lu & H. X. Huyan & S. Lindemann & S. Ryu & H. Lee & T. H. Kim & Y. Yuan & J. A. Zorn & S. Lei & W. P. Gao & T. Tybell & V. Gopalan & X. Q. Pan & A. Gru, 2021. "In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Fangping Zhuo & Xiandong Zhou & Shuang Gao & Marion Höfling & Felix Dietrich & Pedro B. Groszewicz & Lovro Fulanović & Patrick Breckner & Andreas Wohninsland & Bai-Xiang Xu & Hans-Joachim Kleebe & Xia, 2022. "Anisotropic dislocation-domain wall interactions in ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yu-An Xiong & Sheng-Shun Duan & Hui-Hui Hu & Jie Yao & Qiang Pan & Tai-Ting Sha & Xiao Wei & Hao-Ran Ji & Jun Wu & Yu-Meng You, 2024. "Enhancement of phase transition temperature through hydrogen bond modification in molecular ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Hwang-Pill Kim & Mao-Hua Zhang & Bo Wang & Huaiyu Wu & Zhengze Xu & Sipan Liu & Sunho Moon & Yohachi Yamashita & Jong Eun Ryu & Jun Liu & Shujun Zhang & Long-Qing Chen & Xiaoning Jiang, 2024. "Electrical de-poling and re-poling of relaxor-PbTiO3 piezoelectric single crystals without heat treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. He, Lipeng & Wang, Shuangjian & Liu, Renwen & Sun, Baoyu & Wang, Junlei & Lin, Jieqiong, 2023. "Design and research of a water energy piezoelectric energy harvester that changes the linear arrangement of magnet," Energy, Elsevier, vol. 284(C).
    9. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    10. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Chang-Chun Fan & Cheng-Dong Liu & Bei-Dou Liang & Wei Wang & Ming-Liang Jin & Chao-Yang Chai & Chang-Qing Jing & Tong-Yu Ju & Xiang-Bin Han & Wen Zhang, 2024. "Tuning ferroelectric phase transition temperature by enantiomer fraction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Yuanjie Su & Weixiong Li & Xiaoxing Cheng & Yihao Zhou & Shuai Yang & Xu Zhang & Chunxu Chen & Tiannan Yang & Hong Pan & Guangzhong Xie & Guorui Chen & Xun Zhao & Xiao Xiao & Bei Li & Huiling Tai & Ya, 2022. "High-performance piezoelectric composites via β phase programming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Yuzhong Hu & Kaushik Parida & Hao Zhang & Xin Wang & Yongxin Li & Xinran Zhou & Samuel Alexander Morris & Weng Heng Liew & Haomin Wang & Tao Li & Feng Jiang & Mingmin Yang & Marin Alexe & Zehui Du & C, 2022. "Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
    15. Liao Qiao & Xiangyu Gao & Kaile Ren & Chaorui Qiu & Jinfeng Liu & Haonan Jin & Shuxiang Dong & Zhuo Xu & Fei Li, 2024. "Designing transparent piezoelectric metasurfaces for adaptive optics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Run Zhao & Chao Yang & Hongguang Wang & Kai Jiang & Hua Wu & Shipeng Shen & Le Wang & Young Sun & Kuijuan Jin & Ju Gao & Li Chen & Haiyan Wang & Judith L. MacManus-Driscoll & Peter A. Aken & Jiawang H, 2022. "Emergent multiferroism with magnetodielectric coupling in EuTiO3 created by a negative pressure control of strong spin-phonon coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Chaorui Qiu & Zhiqiang Zhang & Zhiqiang Xu & Liao Qiao & Li Ning & Shujun Zhang & Min Su & Weichang Wu & Kexin Song & Zhuo Xu & Long-Qing Chen & Hairong Zheng & Chengbo Liu & Weibao Qiu & Fei Li, 2024. "Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Jun-Chao Qi & Hang Peng & Zhe-Kun Xu & Zhong-Xia Wang & Yuan-Yuan Tang & Wei-Qiang Liao & Guifu Zou & Yu-Meng You & Ren-Gen Xiong, 2024. "Discovery of molecular ferroelectric catalytic annulation for quinolines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44207-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.