IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29276-7.html
   My bibliography  Save this article

Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation

Author

Listed:
  • Xiaoning Wang

    (China University of Petroleum)

  • Lianming Zhao

    (China University of Petroleum)

  • Xuejin Li

    (China University of Petroleum)

  • Yong Liu

    (Qingdao University of Science and Technology)

  • Yesheng Wang

    (China University of Petroleum)

  • Qiaofeng Yao

    (National University of Singapore
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City)

  • Jianping Xie

    (National University of Singapore
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City)

  • Qingzhong Xue

    (China University of Petroleum)

  • Zifeng Yan

    (China University of Petroleum)

  • Xun Yuan

    (Qingdao University of Science and Technology)

  • Wei Xing

    (China University of Petroleum)

Abstract

The discord between the insufficient abundance and the excellent electrocatalytic activity of Pt urgently requires its atomic-level engineering for minimal Pt dosage yet maximized electrocatalytic performance. Here we report the design of ultrasmall triphenylphosphine-stabilized Pt6 nanoclusters for electrocatalytic hydrogen oxidation reaction in alkaline solution. Benefiting from the self-optimized ligand effect and atomic-precision structure, the nanocluster electrocatalyst demonstrates a high mass activity, a high stability, and outperforms both Pt single atoms and Pt nanoparticle analogues, uncovering an unexpected size optimization principle for designing Pt electrocatalysts. Moreover, the nanocluster electrocatalyst delivers a high CO-tolerant ability that conventional Pt/C catalyst lacks. Theoretical calculations confirm that the enhanced electrocatalytic performance is attributable to the bifold effects of the triphenylphosphine ligand, which can not only tune the formation of atomically precise platinum nanoclusters, but also shift the d-band center of Pt atoms for favorable adsorption kinetics of *H, *OH, and CO.

Suggested Citation

  • Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29276-7
    DOI: 10.1038/s41467-022-29276-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29276-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29276-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Duan & Zi-You Yu & Li Yang & Li-Rong Zheng & Chu-Tian Zhang & Xiao-Tu Yang & Fei-Yue Gao & Xiao-Long Zhang & Xingxing Yu & Ren Liu & Hong-He Ding & Chao Gu & Xu-Sheng Zheng & Lei Shi & Jun Jiang & , 2020. "Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Junhua Wang & Yun Zhao & Brian P. Setzler & Santiago Rojas-Carbonell & Chaya Ben Yehuda & Alina Amel & Miles Page & Lan Wang & Keda Hu & Lin Shi & Shimshon Gottesfeld & Bingjun Xu & Yushan Yan, 2019. "Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells," Nature Energy, Nature, vol. 4(5), pages 392-398, May.
    3. Peng Yuan & Ruihua Zhang & Elli Selenius & Pengpeng Ruan & Yangrong Yao & Yang Zhou & Sami Malola & Hannu Häkkinen & Boon K. Teo & Yang Cao & Nanfeng Zheng, 2020. "Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Huan Yan & Yue Lin & Hong Wu & Wenhua Zhang & Zhihu Sun & Hao Cheng & Wei Liu & Chunlei Wang & Junjie Li & Xiaohui Huang & Tao Yao & Jinlong Yang & Shiqiang Wei & Junling Lu, 2017. "Bottom-up precise synthesis of stable platinum dimers on graphene," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    5. Shuai Qin & Yu Duan & Xiao-Long Zhang & Li-Rong Zheng & Fei-Yue Gao & Peng-Peng Yang & Zhuang-Zhuang Niu & Ren Liu & Yu Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Min-Rui Gao, 2021. "Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Zhongbin Zhuang & Stephen A. Giles & Jie Zheng & Glen R. Jenness & Stavros Caratzoulas & Dionisios G. Vlachos & Yushan Yan, 2016. "Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    7. Takane Imaoka & Yuki Akanuma & Naoki Haruta & Shogo Tsuchiya & Kentaro Ishihara & Takeshi Okayasu & Wang-Jae Chun & Masaki Takahashi & Kimihisa Yamamoto, 2017. "Platinum clusters with precise numbers of atoms for preparative-scale catalysis," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    8. Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Zibao Gan & Yungui Liu & Lin Wang & Shuqing Jiang & Nan Xia & Zhipeng Yan & Xiang Wu & Junran Zhang & Wanmiao Gu & Lizhong He & Jingwu Dong & Xuedan Ma & Jaeyong Kim & Zhongyan Wu & Yixuan Xu & Yanchu, 2020. "Distance makes a difference in crystalline photoluminescence," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Lin Li & Ying Lv & Hongting Sheng & Yonglei Du & Haifeng Li & Yapei Yun & Ziyi Zhang & Haizhu Yu & Manzhou Zhu, 2023. "A low-nuclear Ag4 nanocluster as a customized catalyst for the cyclization of propargylamine with CO2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Jinjie Fang & Haiyong Wang & Qian Dang & Hao Wang & Xingdong Wang & Jiajing Pei & Zhiyuan Xu & Chengjin Chen & Wei Zhu & Hui Li & Yushan Yan & Zhongbin Zhuang, 2024. "Atomically dispersed Iridium on Mo2C as an efficient and stable alkaline hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Hui Jin & Zhewei Xu & Zhi-Yi Hu & Zhiwen Yin & Zhao Wang & Zhao Deng & Ping Wei & Shihao Feng & Shunhong Dong & Jinfeng Liu & Sicheng Luo & Zhaodong Qiu & Liang Zhou & Liqiang Mai & Bao-Lian Su & Dong, 2023. "Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Daojun Long & Yongduo Liu & Xinyu Ping & Fadong Chen & Xiongxin Tao & Zhenyang Xie & Minjian Wang & Meng Wang & Li Li & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Constructing CO-immune water dissociation sites around Pt to achieve stable operation in high CO concentration environment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yong Yin & Bingcheng Luo & Kezhi Li & Benjamin M. Moskowitz & Bar Mosevitzky Lis & Israel E. Wachs & Minghui Zhu & Ye Sun & Tianle Zhu & Xiang Li, 2024. "Plasma-assisted manipulation of vanadia nanoclusters for efficient selective catalytic reduction of NOx," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Ji Soo Kim & Hogeun Chang & Sungsu Kang & Seungwoo Cha & Hanguk Cho & Seung Jae Kwak & Namjun Park & Younhwa Kim & Dohun Kang & Chyan Kyung Song & Jimin Kwag & Ji-Sook Hahn & Won Bo Lee & Taeghwan Hye, 2023. "Critical roles of metal–ligand complexes in the controlled synthesis of various metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xiaoyu Tian & Renjie Ren & Fengyuan Wei & Jiajing Pei & Zhongbin Zhuang & Lin Zhuang & Wenchao Sheng, 2024. "Metal-support interaction boosts the stability of Ni-based electrocatalysts for alkaline hydrogen oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    12. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Hongming Sun & Zhenhua Yan & Caiying Tian & Cha Li & Xin Feng & Rong Huang & Yinghui Lan & Jing Chen & Cheng-Peng Li & Zhihong Zhang & Miao Du, 2022. "Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Zheyuan Ding & Sai Chen & Tingting Yang & Zunrong Sheng & Xianhua Zhang & Chunlei Pei & Donglong Fu & Zhi-Jian Zhao & Jinlong Gong, 2024. "Atomically dispersed MoNi alloy catalyst for partial oxidation of methane," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Junjie Li & Ya-fei Jiang & Qi Wang & Cong-Qiao Xu & Duojie Wu & Mohammad Norouzi Banis & Keegan R. Adair & Kieran Doyle-Davis & Debora Motta Meira & Y. Zou Finfrock & Weihan Li & Lei Zhang & Tsun-Kong, 2021. "A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    19. Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Yunqing Kang & Ovidiu Cretu & Jun Kikkawa & Koji Kimoto & Hiroki Nara & Asep Sugih Nugraha & Hiroki Kawamoto & Miharu Eguchi & Ting Liao & Ziqi Sun & Toru Asahi & Yusuke Yamauchi, 2023. "Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29276-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.