IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33007-3.html
   My bibliography  Save this article

Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting

Author

Listed:
  • Jiadong Chen

    (Zhejiang University
    Nanyang Technological University)

  • Chunhong Chen

    (Zhejiang University)

  • Minkai Qin

    (Zhejiang University)

  • Ben Li

    (Zhejiang University)

  • Binbin Lin

    (Zhejiang University)

  • Qing Mao

    (Dalian University of Technology)

  • Hongbin Yang

    (Nanyang Technological University)

  • Bin Liu

    (Nanyang Technological University
    Nanyang Technological University)

  • Yong Wang

    (Zhejiang University)

Abstract

Noble metal electrocatalysts (e.g., Pt, Ru, etc.) suffer from sluggish kinetics of water dissociation for the electrochemical reduction of water to molecular hydrogen in alkaline and neutral pH environments. Herein, we found that an integration of Ru nanoparticles (NPs) on oxygen-deficient WO3-x manifested a 24.0-fold increase in hydrogen evolution reaction (HER) activity compared with commercial Ru/C electrocatalyst in neutral electrolyte. Oxygen-deficient WO3-x is shown to possess large capacity for storing protons, which could be transferred to the Ru NPs under cathodic potential. This significantly increases the hydrogen coverage on the surface of Ru NPs in HER and thus changes the rate-determining step of HER on Ru from water dissociation to hydrogen recombination.

Suggested Citation

  • Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33007-3
    DOI: 10.1038/s41467-022-33007-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33007-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33007-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huajie Yin & Shenlong Zhao & Kun Zhao & Abdul Muqsit & Hongjie Tang & Lin Chang & Huijun Zhao & Yan Gao & Zhiyong Tang, 2015. "Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    2. Jiayuan Li & Jun Hu & Mingkai Zhang & Wangyan Gou & Sai Zhang & Zhong Chen & Yongquan Qu & Yuanyuan Ma, 2021. "A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Bingzhang Lu & Lin Guo & Feng Wu & Yi Peng & Jia En Lu & Tyler J. Smart & Nan Wang & Y. Zou Finfrock & David Morris & Peng Zhang & Ning Li & Peng Gao & Yuan Ping & Shaowei Chen, 2019. "Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Shuai Qin & Yu Duan & Xiao-Long Zhang & Li-Rong Zheng & Fei-Yue Gao & Peng-Peng Yang & Zhuang-Zhuang Niu & Ren Liu & Yu Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Min-Rui Gao, 2021. "Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    6. Cao-Thang Dinh & Ankit Jain & F. Pelayo García Arquer & Phil De Luna & Jun Li & Ning Wang & Xueli Zheng & Jun Cai & Benjamin Z. Gregory & Oleksandr Voznyy & Bo Zhang & Min Liu & David Sinton & Ethan J, 2019. "Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules," Nature Energy, Nature, vol. 4(2), pages 107-114, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Zhao & Sung-Fu Hung & Liming Deng & Wen-Jing Zeng & Tian Xiao & Shaoxiong Li & Chun-Han Kuo & Han-Yi Chen & Feng Hu & Shengjie Peng, 2024. "Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhigang Chen & Wenbin Gong & Juan Wang & Shuang Hou & Guang Yang & Chengfeng Zhu & Xiyue Fan & Yifan Li & Rui Gao & Yi Cui, 2023. "Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yaoda Liu & Lei Li & Li Wang & Na Li & Xiaoxu Zhao & Ya Chen & Thangavel Sakthivel & Zhengfei Dai, 2024. "Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jinqi Xiong & Shanjun Mao & Qian Luo & Honghui Ning & Bing Lu & Yanling Liu & Yong Wang, 2024. "Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    6. Kai Liu & Hao Yang & Yilan Jiang & Zhaojun Liu & Shumeng Zhang & Zhixue Zhang & Zhun Qiao & Yiming Lu & Tao Cheng & Osamu Terasaki & Qing Zhang & Chuanbo Gao, 2023. "Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Woong Hee Lee & Young-Jin Ko & Jung Hwan Kim & Chang Hyuck Choi & Keun Hwa Chae & Hansung Kim & Yun Jeong Hwang & Byoung Koun Min & Peter Strasser & Hyung-Suk Oh, 2021. "High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Jacqueline Noga & Gregor Wolbring, 2014. "The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry," Energies, MDPI, vol. 7(1), pages 1-20, January.
    9. Li, Dandan & Ding, Lei & Zhao, Qiang & Yang, Feng & Zhang, Sihang, 2024. "Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting," Applied Energy, Elsevier, vol. 356(C).
    10. Kudzai Mugadza & Annegret Stark & Patrick G. Ndungu & Vincent O. Nyamori, 2021. "Effects of Ionic Liquid and Biomass Sources on Carbon Nanotube Physical and Electrochemical Properties," Sustainability, MDPI, vol. 13(5), pages 1-12, March.
    11. Roy, Debmalya & Shastri, Babita & Imamuddin, Md. & Mukhopadhyay, K. & Rao, K.U. Bhasker, 2011. "Nanostructured carbon and polymer materials – Synthesis and their application in energy conversion devices," Renewable Energy, Elsevier, vol. 36(3), pages 1014-1018.
    12. Tang, Jia & Yang, Mu & Yu, Fang & Chen, Xingyu & Tan, Li & Wang, Ge, 2017. "1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage," Applied Energy, Elsevier, vol. 187(C), pages 514-522.
    13. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Zhigang Chen & Wenbin Gong & Juan Wang & Shuang Hou & Guang Yang & Chengfeng Zhu & Xiyue Fan & Yifan Li & Rui Gao & Yi Cui, 2023. "Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Valero-Pedraza, María José & Martín-Cortés, Alexandra & Navarrete, Alexander & Bermejo, María Dolores & Martín, Ángel, 2015. "Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids," Energy, Elsevier, vol. 91(C), pages 742-750.
    17. Chen, Guanyi & Wenga, Terrence & Ma, Wenchao & Lin, Fawei, 2019. "Theoretical and experimental study of gas-phase corrosion attack of Fe under simulated municipal solid waste combustion: Influence of KCl, SO2, HCl, and H2O vapour," Applied Energy, Elsevier, vol. 247(C), pages 630-642.
    18. Paweł P. Włodarczyk & Barbara Włodarczyk, 2024. "Study of the Use of Gas Diffusion Anode with Various Cathodes (Cu-Ag, Ni-Co, and Cu-B Alloys) in a Microbial Fuel Cell," Energies, MDPI, vol. 17(7), pages 1-12, March.
    19. Kirankumar Kuruvinashetti & Shanmuga Sundaram Pakkiriswami & Dhilippan M. Panneerselvam & Muthukumaran Packirisamy, 2024. "Micro Photosynthetic Power Cell Array for Energy Harvesting: Bio-Inspired Modeling, Testing and Verification," Energies, MDPI, vol. 17(7), pages 1-18, April.
    20. Yang, Yang & Li, Jun & Yang, Yingrui & Lan, Linghan & Liu, Run & Fu, Qian & Zhang, Liang & Liao, Qiang & Zhu, Xun, 2022. "Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution," Applied Energy, Elsevier, vol. 307(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33007-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.