IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01259-z.html
   My bibliography  Save this article

Bottom-up precise synthesis of stable platinum dimers on graphene

Author

Listed:
  • Huan Yan

    (University of Science and Technology of China)

  • Yue Lin

    (University of Science and Technology of China)

  • Hong Wu

    (University of Science and Technology of China)

  • Wenhua Zhang

    (University of Science and Technology of China)

  • Zhihu Sun

    (University of Science and Technology of China)

  • Hao Cheng

    (University of Science and Technology of China)

  • Wei Liu

    (University of Science and Technology of China)

  • Chunlei Wang

    (University of Science and Technology of China)

  • Junjie Li

    (University of Science and Technology of China)

  • Xiaohui Huang

    (University of Science and Technology of China)

  • Tao Yao

    (University of Science and Technology of China)

  • Jinlong Yang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Shiqiang Wei

    (University of Science and Technology of China)

  • Junling Lu

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Supported metal clusters containing only a few atoms are of great interest. Progress has been made in synthesis of metal single-atom catalysts. However, precise synthesis of metal dimers on high-surface area support remains a grand challenge. Here, we show that Pt2 dimers can be fabricated with a bottom–up approach on graphene using atomic layer deposition, through proper nucleation sites creation, Pt1 single-atom deposition and attaching a secondary Pt atom selectively on the preliminary one. Scanning transmission electron microscopy, x-ray absorption spectroscopy, and theoretical calculations suggest that the Pt2 dimers are likely in the oxidized form of Pt2Ox. In hydrolytic dehydrogenation of ammonia borane, Pt2 dimers exhibit a high specific rate of 2800 molH2 molPt −1 min−1 at room temperature, ~17- and 45-fold higher than graphene supported Pt single atoms and nanoparticles, respectively. These findings open an avenue to bottom–up fabrication of supported atomically precise ultrafine metal clusters for practical applications.

Suggested Citation

  • Huan Yan & Yue Lin & Hong Wu & Wenhua Zhang & Zhihu Sun & Hao Cheng & Wei Liu & Chunlei Wang & Junjie Li & Xiaohui Huang & Tao Yao & Jinlong Yang & Shiqiang Wei & Junling Lu, 2017. "Bottom-up precise synthesis of stable platinum dimers on graphene," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01259-z
    DOI: 10.1038/s41467-017-01259-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01259-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01259-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Junjie Li & Ya-fei Jiang & Qi Wang & Cong-Qiao Xu & Duojie Wu & Mohammad Norouzi Banis & Keegan R. Adair & Kieran Doyle-Davis & Debora Motta Meira & Y. Zou Finfrock & Weihan Li & Lei Zhang & Tsun-Kong, 2021. "A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Yufeng Chen & Zhongling Lang & Kun Feng & Kang Wang & Yangguang Li & Zhenhui Kang & Lin Guo & Jun Zhong & Jun Lu, 2024. "Practical H2 supply from ammonia borane enabled by amorphous iron domain," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    5. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yao, Qilu & Yang, Kangkang & Nie, Wendan & Li, Yaxing & Lu, Zhang-Hui, 2020. "Highly efficient hydrogen generation from hydrazine borane via a MoOx-promoted NiPd nanocatalyst," Renewable Energy, Elsevier, vol. 147(P1), pages 2024-2031.
    7. Xinyi Yang & Wanqing Song & Kang Liao & Xiaoyang Wang & Xin Wang & Jinfeng Zhang & Haozhi Wang & Yanan Chen & Ning Yan & Xiaopeng Han & Jia Ding & Wenbin Hu, 2024. "Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01259-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.