IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37273-7.html
   My bibliography  Save this article

Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2

Author

Listed:
  • Ziang Xu

    (Tsinghua University)

  • Lei Wan

    (Tsinghua University)

  • Yiwen Liao

    (Tsinghua University)

  • Maobin Pang

    (Tsinghua University)

  • Qin Xu

    (Tsinghua University)

  • Peican Wang

    (Tsinghua University)

  • Baoguo Wang

    (Tsinghua University)

Abstract

Electrosynthesis of ammonia from nitrate reduction receives extensive attention recently for its relatively mild conditions and clean energy requirements, while most existed electrochemical strategies can only deliver a low yield rate and short duration for the lack of stable ion exchange membranes at high current density. Here, a bipolar membrane nitrate reduction process is proposed to achieve ionic balance, and increasing water dissociation sites is delivered by constructing a three-dimensional physically interlocked interface for the bipolar membrane. This design simultaneously boosts ionic transfer and interfacial stability compared to traditional ones, successfully reducing transmembrane voltage to 1.13 V at up to current density of 1000 mA cm−2. By combining a Co three-dimensional nanoarray cathode designed for large current and low concentration utilizations, a continuous and high yield bipolar membrane reactor for NH3 electrosynthesis realized a stable electrolysis at 1000 mA cm−2 for over 100 h, Faradaic efficiency of 86.2% and maximum yield rate of 68.4 mg h−1 cm−2 with merely 2000 ppm NO3- alkaline electrolyte. These results show promising potential for artificial nitrogen cycling in the near future.

Suggested Citation

  • Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37273-7
    DOI: 10.1038/s41467-023-37273-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37273-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37273-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lihaokun Chen & Qiucheng Xu & Sebastian Z. Oener & Kevin Fabrizio & Shannon W. Boettcher, 2022. "Design principles for water dissociation catalysts in high-performance bipolar membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Junhua Wang & Yun Zhao & Brian P. Setzler & Santiago Rojas-Carbonell & Chaya Ben Yehuda & Alina Amel & Miles Page & Lan Wang & Keda Hu & Lin Shi & Shimshon Gottesfeld & Bingjun Xu & Yushan Yan, 2019. "Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells," Nature Energy, Nature, vol. 4(5), pages 392-398, May.
    3. Cheng Zhong & Bin Liu & Jia Ding & Xiaorui Liu & Yuwei Zhong & Yuan Li & Changbin Sun & Xiaopeng Han & Yida Deng & Naiqin Zhao & Wenbin Hu, 2020. "Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries," Nature Energy, Nature, vol. 5(6), pages 440-449, June.
    4. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    5. Lauren F. Greenlee, 2020. "Recycling fertilizer," Nature Energy, Nature, vol. 5(8), pages 557-558, August.
    6. Muhammad A. Shehzad & Aqsa Yasmin & Xiaolin Ge & Zijuan Ge & Kaiyu Zhang & Xian Liang & Jianjun Zhang & Geng Li & Xinle Xiao & Bin Jiang & Liang Wu & Tongwen Xu, 2021. "Shielded goethite catalyst that enables fast water dissociation in bipolar membranes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Omar J. Guerra, 2021. "Beyond short-duration energy storage," Nature Energy, Nature, vol. 6(5), pages 460-461, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Li & Wanqiang Yu & Haifeng Yuan & Yujie Wang & Yuke Chen & Di Jiang & Tong Wu & Kepeng Song & Xuchuan Jiang & Hong Liu & Riming Hu & Man Huang & Weijia Zhou, 2024. "Lattice hydrogen transfer in titanium hydride enhances electrocatalytic nitrate to ammonia conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Liu & Yan Jiao & Yao Zheng & Mietek Jaroniec & Shi-Zhang Qiao, 2022. "Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    6. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    10. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Gao, Ziyu & Zhang, Xinjing & Li, Xiaoyu & Xu, Yujie & Chen, Haisheng, 2023. "Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection," Energy, Elsevier, vol. 284(C).
    12. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Cong Zhao & Jiazheng Diao & Zhao Liu & Jie Hao & Suhang He & Shaojia Li & Xingxing Li & Guangwu Li & Qiang Fu & Chuancheng Jia & Xuefeng Guo, 2024. "Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Jiace Hao & Tongde Wang & Ruohan Yu & Jian Cai & Guohua Gao & Zechao Zhuang & Qi Kang & Shuanglong Lu & Zhenhui Liu & Jinsong Wu & Guangming Wu & Mingliang Du & Dingsheng Wang & Han Zhu, 2024. "Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Xiaojie She & Lingling Zhai & Yifei Wang & Pei Xiong & Molly Meng-Jung Li & Tai-Sing Wu & Man Chung Wong & Xuyun Guo & Zhihang Xu & Huaming Li & Hui Xu & Ye Zhu & Shik Chi Edman Tsang & Shu Ping Lau, 2024. "Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A," Nature Energy, Nature, vol. 9(1), pages 81-91, January.
    16. Yang Li & Shisheng Zheng & Hao Liu & Qi Xiong & Haocong Yi & Haibin Yang & Zongwei Mei & Qinghe Zhao & Zu-Wei Yin & Ming Huang & Yuan Lin & Weihong Lai & Shi-Xue Dou & Feng Pan & Shunning Li, 2024. "Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Yuhua Xia & Mengzheng Ouyang & Vladimir Yufit & Rui Tan & Anna Regoutz & Anqi Wang & Wenjie Mao & Barun Chakrabarti & Ashkan Kavei & Qilei Song & Anthony R. Kucernak & Nigel P. Brandon, 2022. "A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Peimiao Zou & Dinu Iuga & Sanliang Ling & Alex J. Brown & Shigang Chen & Mengfei Zhang & Yisong Han & A. Dominic Fortes & Christopher M. Howard & Shanwen Tao, 2024. "A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    20. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37273-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.