IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52520-1.html
   My bibliography  Save this article

Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction

Author

Listed:
  • Xinyi Yang

    (Tianjin University)

  • Wanqing Song

    (Tianjin University)

  • Kang Liao

    (Tianjin University)

  • Xiaoyang Wang

    (Tianjin University)

  • Xin Wang

    (Tianjin University)

  • Jinfeng Zhang

    (Tianjin University)

  • Haozhi Wang

    (Tianjin University
    International Campus of Tianjin University)

  • Yanan Chen

    (Tianjin University)

  • Ning Yan

    (Wuhan University)

  • Xiaopeng Han

    (Tianjin University
    Tianjin University)

  • Jia Ding

    (Tianjin University
    Tianjin University)

  • Wenbin Hu

    (Tianjin University
    International Campus of Tianjin University
    Tianjin University)

Abstract

Atomically dispersed single atom (SA) and atomic cluster (AC) metallic materials attract tremendous attentions in various fields. Expanding monometallic SA and AC to multimetallic SA/AC composites opens vast scientific and technological potentials yet exponentially increasing the synthesis difficulty. Here, we present a general energy-selective-clustering methodology to build the largest reported library of carbon supported bi-/multi-metallic SA/AC materials. The discrepancy in cohesive energy results into selective metal clustering thereby driving the symbiosis of multimetallic SA or/and AC. The library includes 23 bimetallic SA/AC composites, and expanded compositional space of 17 trimetallic, quinary-metallic, septenary-metallic SA/AC composites. We chose bimetallic M1SAM2AC to demonstrate the electrocatalysis utility. Unique decoupled active sites and inter-site synergy lead to 8/47 mV overpotential at 10 mA cm−2 for alkaline/acidic hydrogen evolution and over 1000 h durability in water electrolyzer. Moreover, delicate modulations towards composition and configuration yield high-performance catalysts for multiple electrocatalysis systems. Our work broadens the family of atomically dispersed materials from monometallic to multimetallic and provides a platform to explore the complex composition induced unconventional effects.

Suggested Citation

  • Xinyi Yang & Wanqing Song & Kang Liao & Xiaoyang Wang & Xin Wang & Jinfeng Zhang & Haozhi Wang & Yanan Chen & Ning Yan & Xiaopeng Han & Jia Ding & Wenbin Hu, 2024. "Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52520-1
    DOI: 10.1038/s41467-024-52520-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52520-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52520-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yamei Sun & Ziqian Xue & Qinglin Liu & Yaling Jia & Yinle Li & Kang Liu & Yiyang Lin & Min Liu & Guangqin Li & Cheng-Yong Su, 2021. "Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Xiao Zhang & Mengtao Zhang & Yuchen Deng & Mingquan Xu & Luca Artiglia & Wen Wen & Rui Gao & Bingbing Chen & Siyu Yao & Xiaochen Zhang & Mi Peng & Jie Yan & Aowen Li & Zheng Jiang & Xingyu Gao & Sufen, 2021. "A stable low-temperature H2-production catalyst by crowding Pt on α-MoC," Nature, Nature, vol. 589(7842), pages 396-401, January.
    4. Hongpan Rong & Shufang Ji & Jiatao Zhang & Dingsheng Wang & Yadong Li, 2020. "Synthetic strategies of supported atomic clusters for heterogeneous catalysis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. Xin Lei & Qingyun Tang & Yongping Zheng & Pinit Kidkhunthod & Xiaolong Zhou & Bifa Ji & Yongbing Tang, 2023. "High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis," Nature Sustainability, Nature, vol. 6(7), pages 816-826, July.
    6. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Xiao Hai & Yang Zheng & Qi Yu & Na Guo & Shibo Xi & Xiaoxu Zhao & Sharon Mitchell & Xiaohua Luo & Victor Tulus & Mu Wang & Xiaoyu Sheng & Longbin Ren & Xiangdong Long & Jing Li & Peng He & Huihui Lin , 2023. "Geminal-atom catalysis for cross-coupling," Nature, Nature, vol. 622(7984), pages 754-760, October.
    8. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Huan Yan & Yue Lin & Hong Wu & Wenhua Zhang & Zhihu Sun & Hao Cheng & Wei Liu & Chunlei Wang & Junjie Li & Xiaohui Huang & Tao Yao & Jinlong Yang & Shiqiang Wei & Junling Lu, 2017. "Bottom-up precise synthesis of stable platinum dimers on graphene," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Lei, Yuanting & Zhang, Lili & Zhou, Danni & Xiong, Chengli & Zhao, Yafei & Chen, Wenxing & Xiang, Xu & Shang, Huishan & Zhang, Bing, 2022. "Construction of interconnected NiO/CoFe alloy nanosheets for overall water splitting," Renewable Energy, Elsevier, vol. 194(C), pages 459-468.
    4. Xiaoyun Lin & Xiaowei Du & Shican Wu & Shiyu Zhen & Wei Liu & Chunlei Pei & Peng Zhang & Zhi-Jian Zhao & Jinlong Gong, 2024. "Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Bing Deng & Zhe Wang & Weiyin Chen & John Tianci Li & Duy Xuan Luong & Robert A. Carter & Guanhui Gao & Boris I. Yakobson & Yufeng Zhao & James M. Tour, 2022. "Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Jia Zhao & Ricardo Urrego-Ortiz & Nan Liao & Federico Calle-Vallejo & Jingshan Luo, 2024. "Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Hui Xin & Rongtan Li & Le Lin & Rentao Mu & Mingrun Li & Dan Li & Qiang Fu & Xinhe Bao, 2024. "Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
    9. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Chenhui Zhou & Jia Shi & Zhaoqi Dong & Lingyou Zeng & Yan Chen & Ying Han & Lu Li & Wenyu Zhang & Qinghua Zhang & Lin Gu & Fan Lv & Mingchuan Luo & Shaojun Guo, 2024. "Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Zhou, Yu & Wu, Mingyang & Meng, Kai & Liu, Yurong & Rao, Peng & Wu, Xiao & Huang, Shuyi & Li, Ke & Zheng, Chongwei & Wu, Daoxiong & Deng, Peilin & Li, Jing & Tian, Xinlong & Kang, Zhenye, 2024. "Microscale structure optimization of catalyst layer for comprehensive performance enhancement in proton exchange membrane fuel cell," Energy, Elsevier, vol. 301(C).
    15. Qianhong Wang & Keng Sang & Changwei Liu & Zhihua Zhang & Wenyao Chen & Te Ji & Lina Li & Cheng Lian & Gang Qian & Jing Zhang & Xinggui Zhou & Weikang Yuan & Xuezhi Duan, 2024. "Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    17. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Zhongkai Xie & Shengjie Xu & Longhua Li & Shanhe Gong & Xiaojie Wu & Dongbo Xu & Baodong Mao & Ting Zhou & Min Chen & Xiao Wang & Weidong Shi & Shuyan Song, 2024. "Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52520-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.