IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48672-9.html
   My bibliography  Save this article

Atomically dispersed Iridium on Mo2C as an efficient and stable alkaline hydrogen oxidation reaction catalyst

Author

Listed:
  • Jinjie Fang

    (Beijing University of Chemical Technology)

  • Haiyong Wang

    (Beijing University of Chemical Technology)

  • Qian Dang

    (Beijing University of Chemical Technology)

  • Hao Wang

    (Beijing University of Chemical Technology)

  • Xingdong Wang

    (Beijing University of Chemical Technology)

  • Jiajing Pei

    (Beijing University of Chemical Technology)

  • Zhiyuan Xu

    (Beijing University of Chemical Technology)

  • Chengjin Chen

    (Beijing University of Chemical Technology)

  • Wei Zhu

    (Beijing University of Chemical Technology)

  • Hui Li

    (Beijing University of Chemical Technology)

  • Yushan Yan

    (University of Delaware)

  • Zhongbin Zhuang

    (Beijing University of Chemical Technology
    Beijing University of Chemical Technology)

Abstract

Hydroxide exchange membrane fuel cells (HEMFCs) have the advantages of using cost-effective materials, but hindered by the sluggish anodic hydrogen oxidation reaction (HOR) kinetics. Here, we report an atomically dispersed Ir on Mo2C nanoparticles supported on carbon (IrSA-Mo2C/C) as highly active and stable HOR catalysts. The specific exchange current density of IrSA-Mo2C/C is 4.1 mA cm−2ECSA, which is 10 times that of Ir/C. Negligible decay is observed after 30,000-cycle accelerated stability test. Theoretical calculations suggest the high HOR activity is attributed to the unique Mo2C substrate, which makes the Ir sites with optimized H binding and also provides enhanced OH binding sites. By using a low loading (0.05 mgIr cm−2) of IrSA-Mo2C/C as anode, the fabricated HEMFC can deliver a high peak power density of 1.64 W cm−2. This work illustrates that atomically dispersed precious metal on carbides may be a promising strategy for high performance HEMFCs.

Suggested Citation

  • Jinjie Fang & Haiyong Wang & Qian Dang & Hao Wang & Xingdong Wang & Jiajing Pei & Zhiyuan Xu & Chengjin Chen & Wei Zhu & Hui Li & Yushan Yan & Zhongbin Zhuang, 2024. "Atomically dispersed Iridium on Mo2C as an efficient and stable alkaline hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48672-9
    DOI: 10.1038/s41467-024-48672-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48672-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48672-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Ian T. McCrum & Marc T. M. Koper, 2020. "The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum," Nature Energy, Nature, vol. 5(11), pages 891-899, November.
    3. Gyu Rac Lee & Jun Kim & Doosun Hong & Ye Ji Kim & Hanhwi Jang & Hyeuk Jin Han & Chang-Kyu Hwang & Donghun Kim & Jin Young Kim & Yeon Sik Jung, 2023. "Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Woong Hee Lee & Young-Jin Ko & Jung Hwan Kim & Chang Hyuck Choi & Keun Hwa Chae & Hansung Kim & Yun Jeong Hwang & Byoung Koun Min & Peter Strasser & Hyung-Suk Oh, 2021. "High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Publisher Correction: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    7. Wei Liu & Xiting Wang & Fan Wang & Kaifa Du & Zhaofu Zhang & Yuzheng Guo & Huayi Yin & Dihua Wang, 2021. "A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Ying Wang & Yao Yang & Shuangfeng Jia & Xiaoming Wang & Kangjie Lyu & Yanqiu Peng & He Zheng & Xing Wei & Huan Ren & Li Xiao & Jianbo Wang & David A. Muller & Héctor D. Abruña & Bing Joe Hwang & Junta, 2019. "Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    9. David A. Cullen & K. C. Neyerlin & Rajesh K. Ahluwalia & Rangachary Mukundan & Karren L. More & Rodney L. Borup & Adam Z. Weber & Deborah J. Myers & Ahmet Kusoglu, 2021. "New roads and challenges for fuel cells in heavy-duty transportation," Nature Energy, Nature, vol. 6(5), pages 462-474, May.
    10. Yanrong Xue & Lin Shi & Xuerui Liu & Jinjie Fang & Xingdong Wang & Brian P. Setzler & Wei Zhu & Yushan Yan & Zhongbin Zhuang, 2020. "A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    11. Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yunqing Kang & Ovidiu Cretu & Jun Kikkawa & Koji Kimoto & Hiroki Nara & Asep Sugih Nugraha & Hiroki Kawamoto & Miharu Eguchi & Ting Liao & Ziqi Sun & Toru Asahi & Yusuke Yamauchi, 2023. "Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Linjie Zhang & Haihui Hu & Chen Sun & Dongdong Xiao & Hsiao-Tsu Wang & Yi Xiao & Shuwen Zhao & Kuan Hung Chen & Wei-Xuan Lin & Yu-Cheng Shao & Xiuyun Wang & Chih-Wen Pao & Lili Han, 2024. "Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yin, Yan & Yue, Runfei & Pei, Yabiao & Zhu, Weikang & Liu, Haotian & Yin, Shuoyao & Liu, Xin & Wang, Lianqin & Zhang, Junfeng, 2023. "Synthesis of fine nano-Pt supported on carbon nanotubes for hydrogen oxidation under alkaline conditions," Energy, Elsevier, vol. 281(C).
    10. Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
    11. Jiang, Wei & Wang, Teng & Yuan, Dongdong & Sha, Aimin & Zhang, Shuo & Zhang, Yufei & Xiao, Jingjing & Xing, Chengwei, 2024. "Available solar resources and photovoltaic system planning strategy for highway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    12. Dugoua, Eugenie & Dumas, Marion, 2024. "Coordination dynamics between fuel cell and battery technologies in the transition to clean cars," LSE Research Online Documents on Economics 124029, London School of Economics and Political Science, LSE Library.
    13. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yong-Qing Yan & Ya Chen & Zhao Wang & Li-Hua Chen & Hao-Lin Tang & Bao-Lian Su, 2023. "Electrochemistry-assisted selective butadiene hydrogenation with water," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Tian, Ai-Qing & Wang, Xiao-Yang & Xu, Heying & Pan, Jeng-Shyang & Snášel, Václav & Lv, Hong-Xia, 2024. "Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement," Energy, Elsevier, vol. 294(C).
    17. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Zhang, Lu & Li, Zizhao & Wang, Mingkai & Wang, He & Wang, Bozheng & Wang, Xizhong, 2022. "Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation," Applied Energy, Elsevier, vol. 306(PB).
    18. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    19. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    20. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48672-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.