IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45369-x.html
   My bibliography  Save this article

Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis

Author

Listed:
  • Zhongliang Huang

    (Xiamen University)

  • Shengnan Hu

    (Xiamen University)

  • Mingzi Sun

    (The Hong Kong Polytechnic University, Hung Hom, Kowloon)

  • Yong Xu

    (Chinese Academy of Sciences (CAS))

  • Shangheng Liu

    (Xiamen University)

  • Renjie Ren

    (Wuhan University)

  • Lin Zhuang

    (Wuhan University)

  • Ting-Shan Chan

    (National Synchrotron Radiation Research Center)

  • Zhiwei Hu

    (Max Planck Institute for Chemical Physics of Solids)

  • Tianyi Ding

    (Xiamen University)

  • Jing Zhou

    (Chinese Academy of Sciences)

  • Liangbin Liu

    (Xiamen University)

  • Mingmin Wang

    (Xiamen University)

  • Yu-Cheng Huang

    (National Yang Ming Chiao Tung University)

  • Na Tian

    (Xiamen University)

  • Lingzheng Bu

    (Xiamen University)

  • Bolong Huang

    (The Hong Kong Polytechnic University, Hung Hom, Kowloon)

  • Xiaoqing Huang

    (Xiamen University
    Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM))

Abstract

Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru−1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt−1) and PtRu/C (1.24 A mgPt+Ru−1). More importantly, the peak power density and specific power density are as high as 1.84 W cm−2 and 18.4 W mgPt+Ru−1 with a low loading (0.1 mg cm−2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond.

Suggested Citation

  • Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45369-x
    DOI: 10.1038/s41467-024-45369-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45369-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45369-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Duan & Zi-You Yu & Li Yang & Li-Rong Zheng & Chu-Tian Zhang & Xiao-Tu Yang & Fei-Yue Gao & Xiao-Long Zhang & Xingxing Yu & Ren Liu & Hong-He Ding & Chao Gu & Xu-Sheng Zheng & Lei Shi & Jun Jiang & , 2020. "Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Junhua Wang & Yun Zhao & Brian P. Setzler & Santiago Rojas-Carbonell & Chaya Ben Yehuda & Alina Amel & Miles Page & Lan Wang & Keda Hu & Lin Shi & Shimshon Gottesfeld & Bingjun Xu & Yushan Yan, 2019. "Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells," Nature Energy, Nature, vol. 4(5), pages 392-398, May.
    3. Lei Huang & Min Wei & Ruijuan Qi & Chung-Li Dong & Dai Dang & Cheng-Chieh Yang & Chenfeng Xia & Chao Chen & Shahid Zaman & Fu-Min Li & Bo You & Bao Yu Xia, 2022. "An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Xi Zhang & Guoqing Cui & Haisong Feng & Lifang Chen & Hui Wang & Bin Wang & Xin Zhang & Lirong Zheng & Song Hong & Min Wei, 2019. "Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    7. Zhongbin Zhuang & Stephen A. Giles & Jie Zheng & Glen R. Jenness & Stavros Caratzoulas & Dionisios G. Vlachos & Yushan Yan, 2016. "Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    8. Guangkai Li & Haeseong Jang & Shangguo Liu & Zijian Li & Min Gyu Kim & Qing Qin & Xien Liu & Jaephil Cho, 2022. "The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Chaubey, Rashmi & Sahu, Satanand & James, Olusola O. & Maity, Sudip, 2013. "A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 443-462.
    10. Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Zhang & Xueqin Mu & Zhengyang Liu & Hongyu Zhao & Zechao Zhuang & Yifan Zhang & Shichun Mu & Suli Liu & Dingsheng Wang & Zhihui Dai, 2024. "Twin-distortion modulated ultra-low coordination PtRuNi-Ox catalyst for enhanced hydrogen production from chemical wastewater," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Jinjie Fang & Haiyong Wang & Qian Dang & Hao Wang & Xingdong Wang & Jiajing Pei & Zhiyuan Xu & Chengjin Chen & Wei Zhu & Hui Li & Yushan Yan & Zhongbin Zhuang, 2024. "Atomically dispersed Iridium on Mo2C as an efficient and stable alkaline hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Xiaoyu Tian & Renjie Ren & Fengyuan Wei & Jiajing Pei & Zhongbin Zhuang & Lin Zhuang & Wenchao Sheng, 2024. "Metal-support interaction boosts the stability of Ni-based electrocatalysts for alkaline hydrogen oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    11. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Aghajani Delavar, Mojtaba & Wang, Junye, 2022. "Three-dimensional modeling of photo fermentative biohydrogen generation in a microbioreactor," Renewable Energy, Elsevier, vol. 181(C), pages 1034-1045.
    13. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor," Energies, MDPI, vol. 14(21), pages 1-17, November.
    14. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    15. Liu-Chun Wang & Li-Chan Chang & Wen-Qi Chen & Yi-Hsin Chien & Po-Ya Chang & Chih-Wen Pao & Yin-Fen Liu & Hwo-Shuenn Sheu & Wen-Pin Su & Chen-Hao Yeh & Chen-Sheng Yeh, 2022. "Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Ismail, Mohamed M. & Dincer, Ibrahim, 2023. "A new renewable energy based integrated gasification system for hydrogen production from plastic wastes," Energy, Elsevier, vol. 270(C).
    17. Zhidong An & Piaoping Yang & Delong Duan & Jiang Li & Tong Wan & Yue Kong & Stavros Caratzoulas & Shuting Xiang & Jiaxing Liu & Lei Huang & Anatoly I. Frenkel & Yuan-Ye Jiang & Ran Long & Zhenxing Li , 2023. "Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45369-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.