IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15779-d1277143.html
   My bibliography  Save this article

Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review

Author

Listed:
  • Swatantra Kumar Dubey

    (Department of Environmental Engineering, Seoul National University of Science and Technology (SeoulTech), Nowon-gu, Seoul 01811, Republic of Korea)

  • JungJin Kim

    (Institute of Environmental Technology, Seoul National University of Science and Technology (SeoulTech), Nowon-gu, Seoul 01811, Republic of Korea)

  • Younggu Her

    (Department of Agricultural and Biological Engineering/Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL 33031, USA)

  • Devesh Sharma

    (Department of Atmospheric Science, Central University of Rajasthan, Kishangarh, Ajmer 305817, India)

  • Hanseok Jeong

    (Department of Environmental Engineering, Seoul National University of Science and Technology (SeoulTech), Nowon-gu, Seoul 01811, Republic of Korea
    Institute of Environmental Technology, Seoul National University of Science and Technology (SeoulTech), Nowon-gu, Seoul 01811, Republic of Korea)

Abstract

The Soil and Water Assessment Tool (SWAT) has been widely employed to assist with decision making and management planning for assessing and mitigating the impact of climate change. This model has gained popularity in India as the country is facing increasing water issues under projected climate changes. However, a systematic review of the literature that discusses the applicability of the model, the impact assessment process, and the interpretation of the modeling results in India remains lacking. We synthesized and reviewed 110 recent SWAT modeling studies (published from 2012 to 2022) that evaluated the impact of future climate change on water resources in India to identify research gaps that need to be filled to advance SWAT modeling practices for impact assessments. The review revealed that the SWAT model provided acceptable accuracy statistics in most (90%) of the studies reviewed. Half of these studies identified the base curve number (CN2) as the parameter to which the water balance is the most sensitive; thus, this parameter was included in the calibration process. The accuracy of SWAT modeling is closely associated with the accuracy of the weather data fed to the model. However, extreme events, including heavy storm events and severe droughts, were rarely considered in climate change impact assessments using the SWAT model. Most studies downscaled global-scale climate modeling outputs to local weather stations when applying the SWAT model using various methods, such as the delta change method, multiple linear regression method, gamma–gamma transformation, fitted histogram equalization, and quantile mapping. Further, most studies investigated the performance of the SWAT model before applying the model to quantify the future hydrological consequences of projected climate change in a subsequent scenario analysis. This review suggests that further evaluations of the characteristics and development processes of existing climate data products are needed to effectively consider extreme events in impact assessments. In addition, this review finds that climate change impact modeling has been improved with advances in climate projection preparation, including ensemble averaging, bias correction, and downscaling methods. This regional review of current SWAT modeling practices for climate change impact assessments can be used to create reliable future hydrological projections in India.

Suggested Citation

  • Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15779-:d:1277143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aradhana Yaduvanshi & Rajat K. Sharma & Sarat C. Kar & Anand K. Sinha, 2018. "Rainfall–runoff simulations of extreme monsoon rainfall events in a tropical river basin of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 843-861, January.
    2. Brij Kishor Pandey & Deepak Khare & Akiyuki Kawasaki & Prabhash K. Mishra, 2019. "Climate Change Impact Assessment on Blue and Green Water by Coupling of Representative CMIP5 Climate Models with Physical Based Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 141-158, January.
    3. Boini Narsimlu & Ashvin Gosain & Baghu Chahar, 2013. "Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3647-3662, August.
    4. Singh, A. & Imtiyaz, M. & Isaac, R.K. & Denis, D.M., 2012. "Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India," Agricultural Water Management, Elsevier, vol. 104(C), pages 113-120.
    5. Aijing Zhang & Chi Zhang & Guobin Fu & Bende Wang & Zhenxin Bao & Hongxing Zheng, 2012. "Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2199-2217, June.
    6. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    7. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.
    8. Akansha Kushwaha & Manoj Jain, 2013. "Hydrological Simulation in a Forest Dominated Watershed in Himalayan Region using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3005-3023, June.
    9. Anil Misra, 2011. "Impact of Urbanization on the Hydrology of Ganga Basin (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 705-719, January.
    10. Izidine Pinto & Christopher Lennard & Mark Tadross & Bruce Hewitson & Alessandro Dosio & Grigory Nikulin & Hans-Juergen Panitz & Mxolisi E. Shongwe, 2016. "Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models," Climatic Change, Springer, vol. 135(3), pages 655-668, April.
    11. Aditya Sood & Lal Muthuwatta & Matthew McCartney, 2013. "A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin," Water International, Taylor & Francis Journals, vol. 38(3), pages 297-311, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swati Maurya & Prashant K. Srivastava & Lu Zhuo & Aradhana Yaduvanshi & R. K. Mall, 2023. "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2675-2696, May.
    2. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    3. Thierry C. Fotso-Nguemo & Ismaïla Diallo & Moussa Diakhaté & Derbetini A. Vondou & Mamadou L. Mbaye & Andreas Haensler & Amadou T. Gaye & Clément Tchawoua, 2019. "Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa," Climatic Change, Springer, vol. 155(3), pages 339-357, August.
    4. Jew Das & N. V. Umamahesh, 2018. "Spatio-Temporal Variation of Water Availability in a River Basin under CORDEX Simulated Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1399-1419, March.
    5. Jianzhu Li & Guoqing Li & Shuhan Zhou & Fulong Chen, 2016. "Quantifying the Effects of Land Surface Change on Annual Runoff Considering Precipitation Variability by SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1071-1084, February.
    6. Mustafa Al-Mukhtar & Volkmar Dunger & Broder Merkel, 2014. "Assessing the Impacts of Climate Change on Hydrology of the Upper Reach of the Spree River: Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2731-2749, August.
    7. Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    8. Wallace, Carlington W. & Flanagan, Dennis C. & Engel, Bernard A., 2017. "Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 51-65.
    9. Maryam Abbaszadeh & Ommolbanin Bazrafshan & Rasool Mahdavi & Elham Rafiei Sardooi & Sajad Jamshidi, 2023. "Modeling Future Hydrological Characteristics Based on Land Use/Land Cover and Climate Changes Using the SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4177-4194, August.
    10. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    11. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    12. Cheick Oumar Zouré & Arsène Kiema & Roland Yonaba & Bernard Minoungou, 2023. "Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa)," Land, MDPI, vol. 12(11), pages 1-22, November.
    13. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    14. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Ravish K. Rathee & Sudipta K. Mishra, 2024. "Climate change impact assessment on the water resources of the Upper Yamuna River Basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18477-18498, July.
    16. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    17. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    18. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    19. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    20. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15779-:d:1277143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.