IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i8d10.1007_s11269-019-02450-1.html
   My bibliography  Save this article

Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed

Author

Listed:
  • Carolina Natel Moura

    (Federal University of Paraná)

  • Sílvio Luís Rafaeli Neto

    (Santa Catarina State University)

  • Claudia Guimarães Camargo Campos

    (Santa Catarina State University)

  • Eder Alexandre Schatz Sá

    (Santa Catarina State University)

Abstract

Much attention has been focused on investigating the effects of climate change on hydrological processes on a regional scale. However, the landscape approach, especially the case of well-preserved upland watersheds needs to be further studied. The Representative Concentration Pathway (RCP) or emission scenarios RCP 4.5 and RCP 8.5 were used to project the impacts of the climate change on the hydrological components of a well-preserved upland landscape with temperate climate, using the Upper Canoas watershed as a case study. The future hydrological projection indicated an increase in the monthly rainfall as well as a shift in the rainiest months from winter to spring. This change resulted in an increase in water balance components. The maximum discharges, as well as the modal discharge (Q50), may increase in the future, and the minimums corresponding to Q95 and Q98 may reduce for both emission scenarios. The results showed that a well-preserved upland watershed in a sub-tropical region might be capable of maintaining water availability at level that is enough for human activities in the future, even with the reduction of minimum permit discharge, which is supported by the increase of maximum and medium monthly discharges and a stable flow-duration curve.

Suggested Citation

  • Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-019-02450-1
    DOI: 10.1007/s11269-019-02450-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02450-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02450-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Amraoui & M. A. Sbai & P. Stollsteiner, 2019. "Assessment of Climate Change Impacts on Water Resources in the Somme River Basin (France)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2073-2092, April.
    2. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    3. Chong-yu Xu, 2000. "Modelling the Effects of Climate Change on Water Resources in Central Sweden," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(3), pages 177-189, June.
    4. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.
    5. Sílvio Luís Rafaeli Neto & Eder Alexandre Schatz Sá & Aline Bernarda Debastiani & Víctor Luís Padilha & Thiago Alves Antunes, 2019. "Efficacy of Rainfall-Runoff Models in Loose Coupling Spacial Decision Support Systems Modelbase," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 889-904, February.
    6. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    7. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    2. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    3. Slobodan P. Simonovic, 2017. "Bringing Future Climatic Change into Water Resources Management Practice Today," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2933-2950, August.
    4. Jeffrey O’Hara & Konstantine Georgakakos, 2008. "Quantifying the Urban Water Supply Impacts of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1477-1497, October.
    5. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    6. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    7. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2008. "Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1461-1475, October.
    9. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    10. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    11. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    12. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    13. Syed Asif Ali Naqvi & Abdul Majeed Nadeem & Muhammad Amjed Iqbal & Sadia Ali & Asia Naseem, 2019. "Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan," Sustainability, MDPI, vol. 11(19), pages 1-13, September.
    14. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    15. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    16. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    17. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    18. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    19. Lu, Yongquan & Liu, Guilin & Xian, Yuyang & Tang, Jiaqi & Zhong, Liming, 2024. "Climate change brings both opportunities and challenges to rural revitalization in China: Evidence from apple geographical indication predictions," Agricultural Systems, Elsevier, vol. 216(C).
    20. Ricky P. Laureta & Ric Ryan H. Regalado & Ermar B. De La Cruz, 2021. "Climate vulnerability scenario of the agricultural sector in the Bicol River Basin, Philippines," Climatic Change, Springer, vol. 168(1), pages 1-18, September.

    More about this item

    Keywords

    Eta-HadGEM2-ES; SWAT; Hydrological modeling; Landscape;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-019-02450-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.