IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v1y2018i12d10.1038_s41893-018-0192-z.html
   My bibliography  Save this article

Income growth and climate change effects on global nutrition security to mid-century

Author

Listed:
  • Gerald Nelson

    (University of Illinois, Urbana–Champaign)

  • Jessica Bogard

    (Commonwealth Scientific and Industrial Research Organisation)

  • Keith Lividini

    (International Food Policy Research Institute)

  • Joanne Arsenault

    (University of California)

  • Malcolm Riley

    (Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity)

  • Timothy B. Sulser

    (International Food Policy Research Institute)

  • Daniel Mason-D’Croz

    (Commonwealth Scientific and Industrial Research Organisation)

  • Brendan Power

    (Commonwealth Scientific and Industrial Research Organisation)

  • David Gustafson

    (Independent Scientist)

  • Mario Herrero

    (Commonwealth Scientific and Industrial Research Organisation)

  • Keith Wiebe

    (International Food Policy Research Institute)

  • Karen Cooper

    (Nestlé Research Centre, Vers-chez-les-Blancs)

  • Roseline Remans

    (Bioversity International
    Wageningen University)

  • Mark Rosegrant

    (International Food Policy Research Institute)

Abstract

Twenty-first-century challenges for food and nutrition security include the spread of obesity worldwide and persistent undernutrition in vulnerable populations, along with continued micronutrient deficiencies. Climate change, increasing incomes and evolving diets complicate the search for sustainable solutions. Projecting to the year 2050, we explore future macronutrient and micronutrient adequacy with combined biophysical and socioeconomic scenarios that are country-specific. In all scenarios for 2050, the average benefits of widely shared economic growth, if achieved, are much greater than the modelled negative effects of climate change. Average macronutrient availability in 2050 at the country level appears adequate in all but the poorest countries. Many regions, however, will continue to have critical micronutrient inadequacies. Climate change alters micronutrient availability in some regions more than others. These findings indicate that the greatest food security challenge in 2050 will be providing nutritious diets rather than adequate calories. Research priorities and policies should emphasize nutritional quality by increasing availability and affordability of nutrient-dense foods and improving dietary diversity.

Suggested Citation

  • Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
  • Handle: RePEc:nat:natsus:v:1:y:2018:i:12:d:10.1038_s41893-018-0192-z
    DOI: 10.1038/s41893-018-0192-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-018-0192-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-018-0192-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akila Wijerathna-Yapa & Ranjith Pathirana, 2022. "Sustainable Agro-Food Systems for Addressing Climate Change and Food Security," Agriculture, MDPI, vol. 12(10), pages 1-26, September.
    2. Sulser, Timothy & Wiebe, Keith D. & Dunston, Shahnila & Cenacchi, Nicola & Nin-Pratt, Alejandro & Mason-D’Croz, Daniel & Robertson, Richard D. & Willenbockel, Dirk & Rosegrant, Mark W., 2021. "Climate change and hunger: Estimating costs of adaptation in the agrifood system," Food policy reports 9780896294165, International Food Policy Research Institute (IFPRI).
    3. Emily Injete Amondo & Emmanuel Nshakira-Rukundo & Alisher Mirzabaev, 2023. "The effect of extreme weather events on child nutrition and health," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 571-596, June.
    4. Stads, Gert-Jan & Wiebe, Keith D. & Nin-Pratt, Alejandro & Sulser, Timothy B. & Benfica, Rui & Reda, Fasil & Khetarpal, Ravi, 2022. "Research for the future: Investments for efficiency, sustainability, and equity," IFPRI book chapters, in: 2022 Global food policy report: Climate change and food systems, chapter 4, pages 38-47, International Food Policy Research Institute (IFPRI).
    5. Cenacchi, Nicola & Dunston, Shahnila & Gueneau, Arthur & Mason-D’Croz, Daniel & Mishra, Abhijeet & Pitois, Gauthier & Robertson, Richard D. & Robinson, Sherman & Rosegrant, Mark W. & Sulser, Timothy, 2024. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model documentation for version 3.6," Research reports 148953, International Food Policy Research Institute (IFPRI).
    6. Pepijn Schreinemachers & Julie Howard & Michael Turner & Simon N. Groot & Bhupen Dubey & Learnmore Mwadzingeni & Takemore Chagomoka & Michael Ngugi & Victor Afari-Sefa & Peter Hanson & Marco C. S. Wop, 2021. "Africa’s evolving vegetable seed sector: status, policy options and lessons from Asia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(3), pages 511-523, June.
    7. Learnmore Mwadzingeni & Victor Afari-Sefa & Hussein Shimelis & Sognigbé N’Danikou & Sandiswa Figlan & Lutz Depenbusch & Admire I.T. Shayanowako & Takemore Chagomoka & Malven Mushayi & Pepijn Schreinem, 2021. "Unpacking the value of traditional African vegetables for food and nutrition security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1215-1226, October.
    8. Leah Salm & Nicholas Nisbett & Laura Cramer & Stuart Gillespie & Philip Thornton, 2021. "How climate change interacts with inequity to affect nutrition," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    9. Hoffmann, Farina & Koellner, Thomas & Kastner, Thomas, 2021. "The micronutrient content of the European Union's agricultural trade," Ecological Economics, Elsevier, vol. 188(C).
    10. Olivia Serdeczny & Marina Andrijevic & Claire Fyson & Tabea Lissner & Inga Menke & Carl-Friedrich Schleussner & Emily Theokritoff & Adelle Thomas, 2024. "Climatic risks to adaptive capacity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(1), pages 1-16, January.
    11. Ndashe Philemon Kapulu & Heather Clark & Simon Manda & Harriet Elizabeth Smith & Caroline Orfila & Jennie I. Macdiarmid, 2023. "Evolution of energy and nutrient supply in Zambia (1961–2013) in the context of policy, political, social, economic, and climatic changes," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(2), pages 323-342, April.
    12. Chan, Chin Yee & Prager, Steven & Balie, Jean & Kozicka, Marta & Hareau, Guy & Valera, Harold Glenn & Tran, Nhuong & Wiebe, Keith & Diagne, Mandiaye & Alene, Arega, 2021. "The Future of Food Security, Nutrition and Health for Agri-food Systems Transformation," SocArXiv qgn9u, Center for Open Science.
    13. Sands, Ronald & Beach, Robert, 2022. "Nutrition Indicators for CGE Models," Conference papers 333467, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Kevin Obiero & Paul Meulenbroek & Silke Drexler & Adamneh Dagne & Peter Akoll & Robinson Odong & Boaz Kaunda-Arara & Herwig Waidbacher, 2019. "The Contribution of Fish to Food and Nutrition Security in Eastern Africa: Emerging Trends and Future Outlooks," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    15. Wiebe, Keith & Sulser, Timothy B & Dunston, Shahnila & Rosegrant, Mark W. & Fuglie, Keith & Willenbockel, Dirk & Nelson, Gerald C., 2021. "Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger," SocArXiv h2g6r_v1, Center for Open Science.
    16. Aleskerov, F. & Dutta, S. & Egorov, D. & Tkachev, D., 2024. "Networks under deep uncertainty concerning food security," Journal of the New Economic Association, New Economic Association, vol. 64(3), pages 12-29.
    17. Syed Abu Shoaib & Mohammad Zaved Kaiser Khan & Nahid Sultana & Taufique H. Mahmood, 2021. "Quantifying Uncertainty in Food Security Modeling," Agriculture, MDPI, vol. 11(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    2. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    3. Elke Stehfest, 2014. "Food choices for health and planet," Nature, Nature, vol. 515(7528), pages 501-502, November.
    4. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    5. H. Charles J. Godfray & Sherman Robinson, 2015. "Contrasting approaches to projecting long-run global food security," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 31(1), pages 26-44.
    6. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Syed Abu Shoaib & Mohammad Zaved Kaiser Khan & Nahid Sultana & Taufique H. Mahmood, 2021. "Quantifying Uncertainty in Food Security Modeling," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    8. Dillen, Koen, 2015. "The Russian ban on EU agricultural imports: A bilateral extension of AGLINK-COSIMO," 2015 Conference, August 9-14, 2015, Milan, Italy 211574, International Association of Agricultural Economists.
    9. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    10. Dorin, Bruno & Joly, Pierre-Benoît, 2020. "Modelling world agriculture as a learning machine? From mainstream models to Agribiom 1.0," Land Use Policy, Elsevier, vol. 96(C).
    11. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    13. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    14. Xiaolin Ren & Matthias Weitzel & Brian C. O’Neill & Peter Lawrence & Prasanth Meiyappan & Samuel Levis & Edward J. Balistreri & Michael Dalton, 2018. "Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)," Climatic Change, Springer, vol. 146(3), pages 517-531, February.
    15. Ruth Delzeit & Malte Winkler & Mareike Söder, 2018. "Land Use Change under Biofuel Policies and a Tax on Meat and Dairy Products: Considering Complexity in Agricultural Production Chains Matters," Sustainability, MDPI, vol. 10(2), pages 1-25, February.
    16. Nelson, Gerald C. & van der Mensbrugghe, Dominique, 2014. "Public sector agricultural research priorities for sustainable food security: Perspectives from plausible scenarios:," IFPRI discussion papers 1339, International Food Policy Research Institute (IFPRI).
    17. Pierre Boulanger & George Philippidis, 2015. "The End of a Romance? A Note on the Quantitative Impacts of a ‘Brexit’ from the EU," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 832-842, September.
    18. George Philippidis & Robert M’barek & Emanuele Ferrari, 2016. "Drivers of the European Bioeconomy in Transition (BioEconomy2030): an exploratory, model-based assessment," JRC Research Reports JRC98160, Joint Research Centre.
    19. Simon Dietz & Bruno Lanz, 2019. "Growth and Adaptation to Climate Change in the Long Run," CESifo Working Paper Series 7986, CESifo.
    20. van der Mensbrugghe, Dominique & Jeffrey C. Peters, 2020. "Volume Preserving CES and CET Formulations," GTAP Working Papers 6160, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:12:d:10.1038_s41893-018-0192-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.