IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v155y2019i3d10.1007_s10584-019-02492-9.html
   My bibliography  Save this article

Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa

Author

Listed:
  • Thierry C. Fotso-Nguemo

    (National Institute of Cartography
    University of Yaounde 1)

  • Ismaïla Diallo

    (University of California Los Angeles (UCLA))

  • Moussa Diakhaté

    (Université Cheikh Anta Diop)

  • Derbetini A. Vondou

    (University of Yaounde 1
    Institut de Recherche pour le Développement)

  • Mamadou L. Mbaye

    (Université Assane Seck)

  • Andreas Haensler

    (Helmholtz-Zentrum Geesthacht)

  • Amadou T. Gaye

    (Université Cheikh Anta Diop)

  • Clément Tchawoua

    (University of Yaounde 1)

Abstract

This study explores the potential response of the seasonal cycle of extreme rainfall indices over Central Africa (CA) to the global warming for both the middle (2029–2058) and late twenty-first century (2069–2098), based on analysis of multi-model ensembles mean of fifteen regional climate models (RCMs) simulations. Although few dry/wet biases are still evident, for the present day climate, the RCMs ensemble mostly outperforms the driving global climate models, with a better representation of the seasonal cycle of various rainfall indices over two key sub-regions of CA chosen according to their particular rainfall patterns. Both middle and late twenty-first century project a non-significant decrease in total wet-day rainfall amount over the two analysed sub-regions, with peaks found during pre-monsoon months. We also found a significant decrease in wet-day frequency which was consistent with decreases in total wet-day rainfall amount, while wet-day intensity is projected to significantly increase. These results suggest that the decrease in total wet-day rainfall amount could be associated with less frequent events and not with their intensity. The results also have shown that dry (wet) spells are projected to significantly increase (decrease) over both sub-regions with shorter (longer) dry (wet) spells projected during pre-monsoon months. Consequently, countries within these two sub-regions could experience a more extended dry season, and therefore would be exposed to high drought risk in the future under global warming. However, changes in maximum 1-day rainfall amount, maximum 5-day rainfall amount, and 95th percentile are projected to significantly increase during monsoon months, with the maximum 1-day rainfall amount recording largest increases. Additionally, the total amount of rainfall events above the 95th percentile projects a significant increase of about 10–45 % during monsoon months, while the total number of occurrence of rainfall events above the 95th percentile projects a slight significant decrease of 4–8 % during pre-monsoon months but more pronounced for the late twenty-first century. This implies that in the future, extremes rainfall events could be more intense both in terms of rainfall amount and intensity during monsoon months. Such changes are likely to amplify the probability of flood risks during monsoon months over CA, particularly the two sub-regions. This study could therefore be an important input for disaster preparedness, adaptation planning, and mitigation strategies for Central African countries.

Suggested Citation

  • Thierry C. Fotso-Nguemo & Ismaïla Diallo & Moussa Diakhaté & Derbetini A. Vondou & Mamadou L. Mbaye & Andreas Haensler & Amadou T. Gaye & Clément Tchawoua, 2019. "Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa," Climatic Change, Springer, vol. 155(3), pages 339-357, August.
  • Handle: RePEc:spr:climat:v:155:y:2019:i:3:d:10.1007_s10584-019-02492-9
    DOI: 10.1007/s10584-019-02492-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02492-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02492-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Haensler & Fahad Saeed & Daniela Jacob, 2013. "Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections," Climatic Change, Springer, vol. 121(2), pages 349-363, November.
    2. L. Mariotti & I. Diallo & E. Coppola & F. Giorgi, 2014. "Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections," Climatic Change, Springer, vol. 125(1), pages 53-65, July.
    3. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    4. Jennifer Jacquet & Dale Jamieson, 2016. "Soft but significant power in the Paris Agreement," Nature Climate Change, Nature, vol. 6(7), pages 643-646, July.
    5. Almer, Christian & Laurent-Lucchetti, Jérémy & Oechslin, Manuel, 2017. "Water scarcity and rioting: Disaggregated evidence from Sub-Saharan Africa," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 193-209.
    6. Izidine Pinto & Christopher Lennard & Mark Tadross & Bruce Hewitson & Alessandro Dosio & Grigory Nikulin & Hans-Juergen Panitz & Mxolisi E. Shongwe, 2016. "Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models," Climatic Change, Springer, vol. 135(3), pages 655-668, April.
    7. Sonwa, Denis J. & Somorin, Olufunso A. & Jum, Cyprian & Bele, Mekou Y. & Nkem, Johnson N., 2012. "Vulnerability, forest-related sectors and climate change adaptation: The case of Cameroon," Forest Policy and Economics, Elsevier, vol. 23(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Getachew, Fikadu & Bayabil, Haimanote K. & Hoogenboom, Gerrit & Teshome, Fitsum T. & Zewdu, Eshetu, 2021. "Irrigation and shifting planting date as climate change adaptation strategies for sorghum," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Derbetini A. Vondou & Guy Merlin Guenang & Tchotchou Lucie Angennes Djiotang & Pierre Honore Kamsu-Tamo, 2021. "Trends and Interannual Variability of Extreme Rainfall Indices over Cameroon," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
    3. Nonki, Rodric M. & Amoussou, Ernest & Lennard, Christopher J. & Lenouo, André & Tshimanga, Raphael M. & Houndenou, Constant, 2023. "Quantification and allocation of uncertainties of climate change impacts on hydropower potential under 1.5 °C and 2.0 °C global warming levels in the headwaters of the Benue River Basin, Cameroon," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    2. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    3. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    4. Babatunde J. Abiodun & Jimmy Adegoke & Abayomi A. Abatan & Chidi A. Ibe & Temitope S. Egbebiyi & Francois Engelbrecht & Izidine Pinto, 2017. "Potential impacts of climate change on extreme precipitation over four African coastal cities," Climatic Change, Springer, vol. 143(3), pages 399-413, August.
    5. Julien Jacob & Eve-Angéline Lambert & Mathieu Lefebvre & Sarah Driessche, 2023. "Information disclosure under liability: an experiment on public bads," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(1), pages 155-197, July.
    6. Sara Karam & Ousmane Seidou & Nidhi Nagabhatla & Duminda Perera & Raphael M. Tshimanga, 2022. "Assessing the impacts of climate change on climatic extremes in the Congo River Basin," Climatic Change, Springer, vol. 170(3), pages 1-24, February.
    7. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    8. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Greta C. Dargie & Ian T. Lawson & Tim J. Rayden & Lera Miles & Edward T. A. Mitchard & Susan E. Page & Yannick E. Bocko & Suspense A. Ifo & Simon L. Lewis, 2019. "Congo Basin peatlands: threats and conservation priorities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 669-686, April.
    10. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    11. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    12. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    13. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    15. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    16. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    17. Tobias Ide & Miguel Rodriguez Lopez & Christiane Fröhlich & Jürgen Scheffran, 2021. "Pathways to water conflict during drought in the MENA region," Journal of Peace Research, Peace Research Institute Oslo, vol. 58(3), pages 568-582, May.
    18. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.
    19. Andreas Haensler & Fahad Saeed & Daniela Jacob, 2013. "Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections," Climatic Change, Springer, vol. 121(2), pages 349-363, November.
    20. Maleke Fourati & Victoire Girard & Jeremy Laurent-Lucchetti, 2021. "Sexual violence as a weapon of war," NOVAFRICA Working Paper Series wp2103, Universidade Nova de Lisboa, Nova School of Business and Economics, NOVAFRICA.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:155:y:2019:i:3:d:10.1007_s10584-019-02492-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.