IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v255y2017i1d10.1007_s10479-016-2125-4.html
   My bibliography  Save this article

An integrated emergency response model for toxic gas release accidents based on cellular automata

Author

Listed:
  • Huan Cao

    (East China University of Science and Technology
    East China University of Science and Technology)

  • Tian Li

    (East China University of Science and Technology
    East China University of Science and Technology)

  • Shuxia Li

    (East China University of Science and Technology
    East China University of Science and Technology)

  • Tijun Fan

    (East China University of Science and Technology
    East China University of Science and Technology)

Abstract

An integrated emergency response model based on cellular automata (CA) is proposed for the toxic gas release accidents that happen in the energy and chemical industry. This integrated emergency response model consists of three sub-models: a toxic gas dispersion model, a dynamic evaluation model for accident consequences, and an evacuation route selection model. When a toxic gas release accident happens, the dispersion model predicts the distribution of toxic gas concentration, the evaluation model estimates the consequences in terms of probability of death, expected fatalities and impact scope caused by the accident, and the route selection model provides the safest evacuation route for evacuees. The three sub-models run simultaneously and present real-time results. The proposed model is applied to an ammonia gas release accident in an energy and chemical enterprise, and the corresponding model results are discussed. The efficiency of emergency response for toxic gas release accidents can be further improved through the proposed integrated emergency response model based on CA.

Suggested Citation

  • Huan Cao & Tian Li & Shuxia Li & Tijun Fan, 2017. "An integrated emergency response model for toxic gas release accidents based on cellular automata," Annals of Operations Research, Springer, vol. 255(1), pages 617-638, August.
  • Handle: RePEc:spr:annopr:v:255:y:2017:i:1:d:10.1007_s10479-016-2125-4
    DOI: 10.1007/s10479-016-2125-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2125-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2125-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Weifeng & Tan, Kang Hai, 2011. "A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4210-4218.
    2. Bretschneider, S. & Kimms, A., 2011. "A basic mathematical model for evacuation problems in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 523-539, July.
    3. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    4. Nathan Dahl & Haidong Xue & Xiaolin Hu & Ming Xue, 2015. "Coupled fire–atmosphere modeling of wildland fire spread using DEVS-FIRE and ARPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1013-1035, June.
    5. Huiyu Xuan & Lida Xu & Lu Li, 2009. "A CA-based epidemic model for HIV/AIDS transmission with heterogeneity," Annals of Operations Research, Springer, vol. 168(1), pages 81-99, April.
    6. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    7. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    8. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    9. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    10. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    11. Mukesh Rungta & Gino Lim & MohammadReza Baharnemati, 2012. "Optimal egress time calculation and path generation for large evacuation networks," Annals of Operations Research, Springer, vol. 201(1), pages 403-421, December.
    12. Georgiadou, Paraskevi S. & Papazoglou, Ioannis A. & Kiranoudis, Chris T. & Markatos, Nikolaos C., 2007. "Modeling emergency evacuation for major hazard industrial sites," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1388-1402.
    13. J. Timothy Wootton, 2001. "Local interactions predict large-scale pattern in empirically derived cellular automata," Nature, Nature, vol. 413(6858), pages 841-844, October.
    14. X Chen & F B Zhan, 2008. "Agent-based modelling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 25-33, January.
    15. Bretschneider, S. & Kimms, A., 2012. "Pattern-based evacuation planning for urban areas," European Journal of Operational Research, Elsevier, vol. 216(1), pages 57-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Zeng & Guohua Chen & Yunfeng Yang & Genserik Reniers & Yixin Zhao & Xia Liu, 2020. "A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    2. Seo, Seung-Kwon & Yoon, Young-Gak & Lee, Ju-sung & Na, Jonggeol & Lee, Chul-Jin, 2022. "Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    2. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    3. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    5. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    6. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    7. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    8. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.
    9. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    10. Gwizdałła, Tomasz M., 2015. "Some properties of the floor field cellular automata evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 718-728.
    11. Guan, Junbiao & Wang, Kaihua & Chen, Fangyue, 2016. "A cellular automaton model for evacuation flow using game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 655-661.
    12. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Sun, Lishan & Yuan, Guang & Yao, Liya & Cui, Li & Kong, Dewen, 2021. "Study on strategies for alighting and boarding in subway stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    14. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    15. Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
    17. Uchida, Kenetsu, 2012. "A model evaluating effect of disaster warning issuance conditions on “cry wolf syndrome” in the case of a landslide," European Journal of Operational Research, Elsevier, vol. 218(2), pages 530-537.
    18. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:255:y:2017:i:1:d:10.1007_s10479-016-2125-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.