IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v131y2014icp94-101.html
   My bibliography  Save this article

Resilience of chemical industrial areas through attenuation-based security

Author

Listed:
  • Reniers, G.L.L.
  • Sörensen, K.
  • Khan, F.
  • Amyotte, P.

Abstract

This paper investigates the possibility of attenuation-based security within chemical industrial areas. Representing chemical industrial areas as mathematical networks, we prove by case-study that the resilience to disaster of such areas may follow a power-law distribution. Furthermore, we examine what happens to the network when highly hazardous installations would be intelligently protected against malicious acts: the network disintegrates into separate smaller networks. Hence, islands are formed with no escalation danger in between. We conclude that it is possible to protect chemical industrial areas in such a way that they are more resilient against terrorism.

Suggested Citation

  • Reniers, G.L.L. & Sörensen, K. & Khan, F. & Amyotte, P., 2014. "Resilience of chemical industrial areas through attenuation-based security," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 94-101.
  • Handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:94-101
    DOI: 10.1016/j.ress.2014.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014001094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reniers, G.L.L. & Sörensen, K. & Dullaert, W., 2012. "A multi-attribute Systemic Risk Index for comparing and prioritizing chemical industrial areas," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 35-42.
    2. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bukowski, L., 2016. "System of systems dependability – Theoretical models and applications examples," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 76-92.
    2. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    3. Tao Zeng & Guohua Chen & Yunfeng Yang & Genserik Reniers & Yixin Zhao & Xia Liu, 2020. "A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    4. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    6. Righi, Angela Weber & Saurin, Tarcisio Abreu & Wachs, Priscila, 2015. "A systematic literature review of resilience engineering: Research areas and a research agenda proposal," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 142-152.
    7. Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
    8. Zhang, Laobing & Reniers, Genserik & Chen, Bin & Qiu, Xiaogang, 2019. "CCP game: A game theoretical model for improving the scheduling of chemical cluster patrolling," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Bowen Guo & Wei Zhan, 2023. "Research on Integrated Scheduling of Multi-Mode Emergency Rescue for Flooding in Chemical Parks," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    10. Janssens, Jochen & Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth, 2015. "A decision model to allocate protective safety barriers and mitigate domino effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 44-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    2. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Hongyan Dui & Xinyue Wang & Haohao Zhou, 2023. "Redundancy-Based Resilience Optimization of Multi-Component Systems," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    4. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    5. Rocco, Claudio M. & Hernandez-Perdomo, Elvis & Mun, Johnathan, 2021. "Assessing manufacturing flow lines under uncertainties in processing time: An application based on max-plus equations, multicriteria decisions, and global sensitivity analysis," International Journal of Production Economics, Elsevier, vol. 234(C).
    6. Landegren, Finn & Höst, Martin & Möller, Peter, 2018. "Simulation based assessment of resilience of two large-scale socio-technical IT networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 112-125.
    7. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. Li, Ruiying & Gao, Ying, 2022. "On the component resilience importance measures for infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    9. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Xiaohe Zhang & Haixiao Pan, 2023. "Community Resilience in Accessing Essential Service Facilities Considering Equity and Aging Demand: A Case of Shanghai, China," Land, MDPI, vol. 12(12), pages 1-21, December.
    11. Xiang He & Yongbo Yuan, 2019. "A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3691-3706, September.
    12. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    13. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Barker, Kash & Moronta, Jose, 2018. "Quantifying the resilience of community structures in networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 466-474.
    14. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    15. Zhou, Di & Zhuang, Xiao & Zuo, Hongfu & Cai, Jing & Zhao, Xufeng & Xiang, Jiawei, 2022. "A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Resilience Measure of Network Systems by Node and Edge Indicators," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Mocellin, Paolo & Pilenghi, Lisa, 2023. "Semi-quantitative approach to prioritize risk in industrial chemical plants aggregating safety, economics and ageing: A case study," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    19. Cerqueti, Roy & Ferraro, Giovanna & Iovanella, Antonio, 2019. "Measuring network resilience through connection patterns," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 320-329.
    20. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:94-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.