Reinforcement Learning Approaches to Optimal Market Making
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
- Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
- Bastien Baldacci & Iuliia Manziuk & Thibaut Mastrolia & Mathieu Rosenbaum, 2019. "Market making and incentives design in the presence of a dark pool: a deep reinforcement learning approach," Papers 1912.01129, arXiv.org.
- Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
- Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
- Nicholas T. Chan and Christian Shelton, 2001. "An Adaptive Electronic Market-Maker," Computing in Economics and Finance 2001 146, Society for Computational Economics.
- Olivier Guéant & Iuliia Manziuk, 2019.
"Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
- Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03252505, HAL.
- Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Post-Print hal-03252505, HAL.
- Glosten, Lawrence R. & Milgrom, Paul R., 1985.
"Bid, ask and transaction prices in a specialist market with heterogeneously informed traders,"
Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
- Lawrence R. Glosten & Paul R. Milgrom, 1983. "Bid, Ask and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders," Discussion Papers 570, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Ho, Thomas & Stoll, Hans R., 1981.
"Optimal dealer pricing under transactions and return uncertainty,"
Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
- Thomas Ho & Hans Stoll, "undated". "Optimal Dealer Pricing Under Transactions and Return Uncertainty," Rodney L. White Center for Financial Research Working Papers 27-79, Wharton School Rodney L. White Center for Financial Research.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Tucker Hybinette Balch & Mahmoud Mahfouz & Joshua Lockhart & Maria Hybinette & David Byrd, 2019. "How to Evaluate Trading Strategies: Single Agent Market Replay or Multiple Agent Interactive Simulation?," Papers 1906.12010, arXiv.org.
- Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
- Jonathan Sadighian, 2020. "Extending Deep Reinforcement Learning Frameworks in Cryptocurrency Market Making," Papers 2004.06985, arXiv.org.
- Matias Selser & Javier Kreiner & Manuel Maurette, 2021. "Optimal Market Making by Reinforcement Learning," Papers 2104.04036, arXiv.org.
- Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
- Yagna Patel, 2018. "Optimizing Market Making using Multi-Agent Reinforcement Learning," Papers 1812.10252, arXiv.org.
- Dieter Hendricks & Diane Wilcox, 2014. "A reinforcement learning extension to the Almgren-Chriss model for optimal trade execution," Papers 1403.2229, arXiv.org.
- Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Mosavi, Amir & Faghan, Yaser & Ghamisi, Pedram & Duan, Puhong & Ardabili, Sina Faizollahzadeh & Hassan, Salwana & Band, Shahab S., 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," OSF Preprints jrc58, Center for Open Science.
- David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
- Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
- Jonathan Sadighian, 2019. "Deep Reinforcement Learning in Cryptocurrency Market Making," Papers 1911.08647, arXiv.org.
- Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yanyan Fan & Yu Zhang & Baosu Guo & Xiaoyuan Luo & Qingjin Peng & Zhenlin Jin, 2022. "A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning," Mathematics, MDPI, vol. 10(16), pages 1-23, August.
- Luca Lalor & Anatoliy Swishchuk, 2024. "Reinforcement Learning in Non-Markov Market-Making," Papers 2410.14504, arXiv.org, revised Nov 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
- Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
- Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
- Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Bruno Gav{s}perov & Zvonko Kostanjv{c}ar, 2022. "Deep Reinforcement Learning for Market Making Under a Hawkes Process-Based Limit Order Book Model," Papers 2207.09951, arXiv.org.
- Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
- Jiafa He & Cong Zheng & Can Yang, 2023. "Integrating Tick-level Data and Periodical Signal for High-frequency Market Making," Papers 2306.17179, arXiv.org.
- Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
- Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.
- Hui Niu & Siyuan Li & Jiahao Zheng & Zhouchi Lin & Jian Li & Jian Guo & Bo An, 2023. "IMM: An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making," Papers 2308.08918, arXiv.org.
- Luca Lalor & Anatoliy Swishchuk, 2024. "Reinforcement Learning in Non-Markov Market-Making," Papers 2410.14504, arXiv.org, revised Nov 2024.
- Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
- Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
- Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
- Philippe Bergault & Olivier Guéant, 2021.
"Size matters for OTC market makers: General results and dimensionality reduction techniques,"
Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
- Philippe Bergault & Olivier Guéant, 2020. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02987894, HAL.
- Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Post-Print hal-03885108, HAL.
- Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Post-Print hal-03252557, HAL.
- Philippe Bergault & Olivier Guéant, 2020. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Working Papers hal-02987894, HAL.
- Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03252557, HAL.
- Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
- Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Automated Market Making: the case of Pegged Assets," Papers 2411.08145, arXiv.org.
- Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
- Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
More about this item
Keywords
deep reinforcement learning; reinforcement learning; finance; market making; machine learning; deep learning; survey; literature review;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2689-:d:662748. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.