IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.04216.html
   My bibliography  Save this paper

Market Making via Reinforcement Learning

Author

Listed:
  • Thomas Spooner
  • John Fearnley
  • Rahul Savani
  • Andreas Koukorinis

Abstract

Market making is a fundamental trading problem in which an agent provides liquidity by continually offering to buy and sell a security. The problem is challenging due to inventory risk, the risk of accumulating an unfavourable position and ultimately losing money. In this paper, we develop a high-fidelity simulation of limit order book markets, and use it to design a market making agent using temporal-difference reinforcement learning. We use a linear combination of tile codings as a value function approximator, and design a custom reward function that controls inventory risk. We demonstrate the effectiveness of our approach by showing that our agent outperforms both simple benchmark strategies and a recent online learning approach from the literature.

Suggested Citation

  • Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
  • Handle: RePEc:arx:papers:1804.04216
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.04216
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sanford J. Grossman & Merton H. Miller, 1988. "Liquidity and Market Structure," NBER Working Papers 2641, National Bureau of Economic Research, Inc.
    2. Leaver, Meghan & Reader, Tom W., 2016. "Human factors in financial trading: an analysis of trading incidents," LSE Research Online Documents on Economics 66307, London School of Economics and Political Science, LSE Library.
    3. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    5. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    6. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    7. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    8. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.
    9. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    10. Álvaro Cartea & Sebastian Jaimungal, 2015. "Risk Metrics And Fine Tuning Of High-Frequency Trading Strategies," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 576-611, July.
    11. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    12. Nicholas T. Chan and Christian Shelton, 2001. "An Adaptive Electronic Market-Maker," Computing in Economics and Finance 2001 146, Society for Computational Economics.
    13. Fabien Guilbaud & Huyen Pham, 2011. "Optimal High Frequency Trading with limit and market orders," Working Papers hal-00603385, HAL.
    14. Abergel,Frédéric & Anane,Marouane & Chakraborti,Anirban & Jedidi,Aymen & Muni Toke,Ioane, 2016. "Limit Order Books," Cambridge Books, Cambridge University Press, number 9781107163980, September.
    15. Fabien Guilbaud & Huyen Pham, 2011. "Optimal High Frequency Trading with limit and market orders," Papers 1106.5040, arXiv.org.
    16. Frédéric Abergel & Anirban Chakraborti & Aymen Jedidi & Ioane Muni Toke & Marouane Anane, 2016. "Limit Order Books," Post-Print hal-02177394, HAL.
    17. Hugh L. Christensen & Richard E. Turner & Simon I. Hill & Simon J. Godsill, 2013. "Rebuilding the limit order book: sequential Bayesian inference on hidden states," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1779-1799, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    2. Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
    3. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    4. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    5. Federico Gonzalez & Mark Schervish, 2017. "Instantaneous order impact and high-frequency strategy optimization in limit order books," Papers 1707.01167, arXiv.org, revised Oct 2017.
    6. Xiaofei Lu & Fr'ed'eric Abergel, 2018. "Order-book modelling and market making strategies," Papers 1806.05101, arXiv.org.
    7. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    8. Qing-Qing Yang & Jia-Wen Gu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "On Optimal Pricing Model for Multiple Dealers in a Competitive Market," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 397-431, January.
    9. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    10. Burcu Aydoğan & Ömür Uğur & Ümit Aksoy, 2023. "Optimal Limit Order Book Trading Strategies with Stochastic Volatility in the Underlying Asset," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 289-324, June.
    11. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    12. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    13. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag`es, 2011. "Optimal posting price of limit orders: learning by trading," Papers 1112.2397, arXiv.org, revised Sep 2012.
    14. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    15. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    16. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    17. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    18. Abbas Haider & Hui Wang & Bryan Scotney & Glenn Hawe, 2022. "Predictive Market Making via Machine Learning," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
    19. Pietro Fodra & Mauricio Labadie, 2012. "High-frequency market-making with inventory constraints and directional bets," Papers 1206.4810, arXiv.org.
    20. Peng Wu & Marcello Rambaldi & Jean-François Muzy & Emmanuel Bacry, 2021. "Queue-reactive Hawkes models for the order flow," Working Papers hal-02409073, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.04216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.