IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p3019-d894277.html
   My bibliography  Save this article

A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning

Author

Listed:
  • Yanyan Fan

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Yu Zhang

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Baosu Guo

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Xiaoyuan Luo

    (School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Qingjin Peng

    (Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

  • Zhenlin Jin

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

Abstract

Deep learning has been widely used in different fields such as computer vision and speech processing. The performance of deep learning algorithms is greatly affected by their hyperparameters. For complex machine learning models such as deep neural networks, it is difficult to determine their hyperparameters. In addition, existing hyperparameter optimization algorithms easily converge to a local optimal solution. This paper proposes a method for hyperparameter optimization that combines the Sparrow Search Algorithm and Particle Swarm Optimization, called the Hybrid Sparrow Search Algorithm. This method takes advantages of avoiding the local optimal solution in the Sparrow Search Algorithm and the search efficiency of Particle Swarm Optimization to achieve global optimization. Experiments verified the proposed algorithm in simple and complex networks. The results show that the Hybrid Sparrow Search Algorithm has the strong global search capability to avoid local optimal solutions and satisfactory search efficiency in both low and high-dimensional spaces. The proposed method provides a new solution for hyperparameter optimization problems in deep learning models.

Suggested Citation

  • Yanyan Fan & Yu Zhang & Baosu Guo & Xiaoyuan Luo & Qingjin Peng & Zhenlin Jin, 2022. "A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning," Mathematics, MDPI, vol. 10(16), pages 1-23, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3019-:d:894277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/3019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/3019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Omri & Sayed Abdel-Khalek & Eied M. Khalil & Jamel Bouslimi & Gyanendra Prasad Joshi, 2022. "Modeling of Hyperparameter Tuned Deep Learning Model for Automated Image Captioning," Mathematics, MDPI, vol. 10(3), pages 1-20, January.
    2. P. M. Lerman, 1980. "Fitting Segmented Regression Models by Grid Search," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 77-84, March.
    3. Andrey Gorshenin & Victor Kuzmin, 2022. "Statistical Feature Construction for Forecasting Accuracy Increase and Its Applications in Neural Network Based Analysis," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    4. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    5. Mohammad Khishe & Fabio Caraffini & Stefan Kuhn, 2021. "Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonfiglio, A. & Camaioni, B. & Carta, V. & Cristiano, S., 2023. "Estimating the common agricultural policy milestones and targets by neural networks," Evaluation and Program Planning, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adham Alsharkawi & Mohammad Al-Fetyani & Maha Dawas & Heba Saadeh & Musa Alyaman, 2021. "Poverty Classification Using Machine Learning: The Case of Jordan," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    2. Tan, Xiujie & Xiao, Ziwei & Liu, Yishuang & Taghizadeh-Hesary, Farhad & Wang, Banban & Dong, Hanmin, 2022. "The effect of green credit policy on energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Suwon Song & Chun Gun Park, 2019. "Alternative Algorithm for Automatically Driving Best-Fit Building Energy Baseline Models Using a Data—Driven Grid Search," Sustainability, MDPI, vol. 11(24), pages 1-11, December.
    4. Tahira Kootbodien & Nisha Naicker & Kerry S. Wilson & Raj Ramesar & Leslie London, 2020. "Trends in Suicide Mortality in South Africa, 1997 to 2016," IJERPH, MDPI, vol. 17(6), pages 1-16, March.
    5. Jonathan Readshaw & Stefano Giani, 2020. "Using Company Specific Headlines and Convolutional Neural Networks to Predict Stock Fluctuations," Papers 2006.12426, arXiv.org.
    6. Erjia Ge & Yee Leung, 2013. "Detection of crossover time scales in multifractal detrended fluctuation analysis," Journal of Geographical Systems, Springer, vol. 15(2), pages 115-147, April.
    7. Bucarey, Víctor & Labbé, Martine & Morales, Juan M. & Pineda, Salvador, 2021. "An exact dynamic programming approach to segmented isotonic regression," Omega, Elsevier, vol. 105(C).
    8. Niu, Tong & Li, Yu & Zhang, Caizhi & Hu, Xiaosong & Wang, Gucheng & Li, Yuehua & Zeng, Tao & Wei, Zhongbao, 2024. "Prediction of fuel cell degradation trends using long short term memory optimization algorithm based on four-module experimental reactor validation," Renewable Energy, Elsevier, vol. 237(PC).
    9. Tan, Xiujie & Dong, Hanmin & Liu, Yishuang & Su, Xin & Li, Zixian, 2022. "Green bonds and corporate performance: A potential way to achieve green recovery," Renewable Energy, Elsevier, vol. 200(C), pages 59-68.
    10. Matúš Maciak & Ivan Mizera, 2016. "Regularization techniques in joinpoint regression," Statistical Papers, Springer, vol. 57(4), pages 939-955, December.
    11. Rodrigo R. Soares & Rudi Rocha & Michel Szklo, 2021. "American Delusion: Life Expectancy and Welfare in the US from an International Perspective," Working Papers 13, Instituto de Estudos para Políticas de Saúde.
    12. Walter Mazzucco & Rosanna Cusimano & Sergio Mazzola & Giuseppa Rudisi & Maurizio Zarcone & Claudia Marotta & Giorgio Graziano & Paolo D’Angelo & Francesco Vitale, 2018. "Childhood and Adolescence Cancers in the Palermo Province (Southern Italy): Ten Years (2003–2012) of Epidemiological Surveillance," IJERPH, MDPI, vol. 15(7), pages 1-14, June.
    13. Muhammad Aliyu & Amir Abdullahi Bature, 2024. "Image Captioning of an Environment Using Machine Learning Algorithms (A Case Study of Gwarzo Road, Kano Nigeria)," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(10), pages 677-689, October.
    14. Vito Muggeo & Massimo Attanasio & Mariano Porcu, 2009. "A segmented regression model for event history data: an application to the fertility patterns in Italy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(9), pages 973-988.
    15. J. Muñoz & E. Álvarez-Verdejo & R. García-Fernández & L. Barroso, 2015. "Efficient Estimation of the Headcount Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 123(3), pages 713-732, September.
    16. Jaehyun Jung & Muhammad Muzammil Azad & Heung Soo Kim, 2025. "Multi-Feature Extraction and Explainable Machine Learning for Lamb-Wave-Based Damage Localization in Laminated Composites," Mathematics, MDPI, vol. 13(5), pages 1-23, February.
    17. Ying Li & Ye Tang, 2023. "Novel Creation Method of Feature Graphics for Image Generation Based on Deep Learning Algorithms," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
    18. Aalok Ranjan Chaurasia, 2020. "Long-Term Trend in Infant Mortality in India: A Joinpoint Regression Analysis for 1971–2018," Indian Journal of Human Development, , vol. 14(3), pages 394-406, December.
    19. Sevgen Sibel Canaz & Tanrivermiş Yeşim, 2024. "Comparison of Machine Learning Algorithms for Mass Appraisal of Real Estate Data," Real Estate Management and Valuation, Sciendo, vol. 32(2), pages 100-111.
    20. Irina Kochetkova & Anna Kushchazli & Sofia Burtseva & Andrey Gorshenin, 2023. "Short-Term Mobile Network Traffic Forecasting Using Seasonal ARIMA and Holt-Winters Models," Future Internet, MDPI, vol. 15(9), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3019-:d:894277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.