IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.13205.html
   My bibliography  Save this paper

Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality

Author

Listed:
  • Olivier Gu'eant
  • Iuliia Manziuk

Abstract

In corporate bond markets, which are mainly OTC markets, market makers play a central role by providing bid and ask prices for a large number of bonds to asset managers from all around the globe. Determining the optimal bid and ask quotes that a market maker should set for a given universe of bonds is a complex task. Useful models exist, most of them inspired by that of Avellaneda and Stoikov. These models describe the complex optimization problem faced by market makers: proposing bid and ask prices in an optimal way for making money out of the difference between bid and ask prices while mitigating the market risk associated with holding inventory. While most of the models only tackle one-asset market making, they can often be generalized to a multi-asset framework. However, the problem of solving numerically the equations characterizing the optimal bid and ask quotes is seldom tackled in the literature, especially in high dimension. In this paper, our goal is to propose a numerical method for approximating the optimal bid and ask quotes over a large universe of bonds in a model \`a la Avellaneda-Stoikov. Because we aim at considering a large universe of bonds, classical finite difference methods as those discussed in the literature cannot be used and we present therefore a discrete-time method inspired by reinforcement learning techniques. More precisely, the approach we propose is a model-based actor-critic-like algorithm involving deep neural networks.

Suggested Citation

  • Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
  • Handle: RePEc:arx:papers:1910.13205
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.13205
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    2. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    3. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    4. Philippe Bergault & Olivier Gu'eant, 2019. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Papers 1907.01225, arXiv.org, revised Sep 2022.
    5. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    6. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2019. "Algorithmic market making for options," Papers 1907.12433, arXiv.org, revised Jul 2020.
    2. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    3. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    4. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    5. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Automated Market Making: the case of Pegged Assets," Papers 2411.08145, arXiv.org.
    6. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    7. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Market making by an FX dealer: tiers, pricing ladders and hedging rates for optimal risk control," Papers 2112.02269, arXiv.org, revised Jun 2023.
    8. Jialiang Luo & Harry Zheng, 2021. "Dynamic Equilibrium of Market Making with Price Competition," Dynamic Games and Applications, Springer, vol. 11(3), pages 556-579, September.
    9. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    10. Olivier Gu'eant & Jiang Pu, 2018. "Mid-price estimation for European corporate bonds: a particle filtering approach," Papers 1810.05884, arXiv.org, revised Mar 2019.
    11. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    12. Mathieu Rosenbaum & Jianfei Zhang, 2022. "Multi-asset market making under the quadratic rough Heston," Papers 2212.10164, arXiv.org.
    13. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    14. Burcu Aydoğan & Ömür Uğur & Ümit Aksoy, 2023. "Optimal Limit Order Book Trading Strategies with Stochastic Volatility in the Underlying Asset," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 289-324, June.
    15. Philippe Bergault & Olivier Gu'eant, 2019. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Papers 1907.01225, arXiv.org, revised Sep 2022.
    16. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    17. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2022. "Dealing with multi-currency inventory risk in FX cash markets," Papers 2207.04100, arXiv.org, revised Oct 2023.
    18. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    19. Diego Zabaljauregui, 2020. "Optimal market making under partial information and numerical methods for impulse control games with applications," Papers 2009.06521, arXiv.org.
    20. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.13205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.