IDEAS home Printed from https://ideas.repec.org/p/sce/scecf1/146.html
   My bibliography  Save this paper

An Adaptive Electronic Market-Maker

Author

Listed:
  • Nicholas T. Chan and Christian Shelton

Abstract

This paper presents an adaptive learning model for market-making under the reinforcement learn-ing framework. Reinforcement learning is a learning technique in which agents aim to maximize the long-term accumulated rewards. No knowledge of the market environment, such as the order arrival or price process, is assumed. Instead, the agent learns from real-time market experience and develops explicit market-making strategies, achieving multiple objectives including the maximizing of profits and minimization of the bid-ask spread. The simulation results show initial success in bringing learning techniques to building market-making algorithms.

Suggested Citation

  • Nicholas T. Chan and Christian Shelton, 2001. "An Adaptive Electronic Market-Maker," Computing in Economics and Finance 2001 146, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:146
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    2. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    3. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    4. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    5. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    6. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    7. Tristan Lim, 2024. "Predictive crypto-asset automated market maker architecture for decentralized finance using deep reinforcement learning," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    8. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    10. Alexandru Mandes, 2016. "Algorithmic and High-Frequency Trading Strategies: A Literature Review," MAGKS Papers on Economics 201625, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
    12. Boer-Sorban, K. & de Bruin, A. & Kaymak, U., 2005. "On the Design of Artificial Stock Markets," ERIM Report Series Research in Management ERS-2005-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    14. Hui Niu & Siyuan Li & Jiahao Zheng & Zhouchi Lin & Jian Li & Jian Guo & Bo An, 2023. "IMM: An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making," Papers 2308.08918, arXiv.org.
    15. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    16. Viraj Nadkarni & Sanjeev Kulkarni & Pramod Viswanath, 2024. "Adaptive Curves for Optimally Efficient Market Making," Papers 2406.13794, arXiv.org.
    17. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    18. Luca Lalor & Anatoliy Swishchuk, 2024. "Reinforcement Learning in Non-Markov Market-Making," Papers 2410.14504, arXiv.org, revised Nov 2024.
    19. Gao, Xuefeng & Xu, Tianrun, 2022. "Order scoring, bandit learning and order cancellations," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    20. Jiafa He & Cong Zheng & Can Yang, 2023. "Integrating Tick-level Data and Periodical Signal for High-frequency Market Making," Papers 2306.17179, arXiv.org.
    21. Abbas Haider & Hui Wang & Bryan Scotney & Glenn Hawe, 2022. "Predictive Market Making via Machine Learning," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
    22. Tristan Lim, 2022. "Predictive Crypto-Asset Automated Market Making Architecture for Decentralized Finance using Deep Reinforcement Learning," Papers 2211.01346, arXiv.org, revised Jan 2023.

    More about this item

    Keywords

    Agent-Based Models; Market-making; Artificial Markets; Market Microstructure;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.