IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.07184.html
   My bibliography  Save this paper

Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations

Author

Listed:
  • Nelson Vadori
  • Leo Ardon
  • Sumitra Ganesh
  • Thomas Spooner
  • Selim Amrouni
  • Jared Vann
  • Mengda Xu
  • Zeyu Zheng
  • Tucker Balch
  • Manuela Veloso

Abstract

We study a game between liquidity provider and liquidity taker agents interacting in an over-the-counter market, for which the typical example is foreign exchange. We show how a suitable design of parameterized families of reward functions coupled with shared policy learning constitutes an efficient solution to this problem. By playing against each other, our deep-reinforcement-learning-driven agents learn emergent behaviors relative to a wide spectrum of objectives encompassing profit-and-loss, optimal execution and market share. In particular, we find that liquidity providers naturally learn to balance hedging and skewing, where skewing refers to setting their buy and sell prices asymmetrically as a function of their inventory. We further introduce a novel RL-based calibration algorithm which we found performed well at imposing constraints on the game equilibrium. On the theoretical side, we are able to show convergence rates for our multi-agent policy gradient algorithm under a transitivity assumption, closely related to generalized ordinal potential games.

Suggested Citation

  • Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2210.07184
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.07184
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Sanmay Das, 2005. "A learning market-maker in the Glosten-Milgrom model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 169-180.
    3. Stephan Zheng & Alexander Trott & Sunil Srinivasa & Nikhil Naik & Melvin Gruesbeck & David C. Parkes & Richard Socher, 2020. "The AI Economist: Improving Equality and Productivity with AI-Driven Tax Policies," Papers 2004.13332, arXiv.org.
    4. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    5. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    6. Hefti, Andreas, 2017. "Equilibria in symmetric games: theory and applications," Theoretical Economics, Econometric Society, vol. 12(3), September.
    7. Peter Duersch & Jörg Oechssler & Burkhard Schipper, 2012. "Pure strategy equilibria in symmetric two-player zero-sum games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 553-564, August.
    8. Amihud, Yakov & Mendelson, Haim, 1980. "Dealership market : Market-making with inventory," Journal of Financial Economics, Elsevier, vol. 8(1), pages 31-53, March.
    9. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    10. Garman, Mark B., 1976. "Market microstructure," Journal of Financial Economics, Elsevier, vol. 3(3), pages 257-275, June.
    11. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    12. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    13. Nicholas T. Chan and Christian Shelton, 2001. "An Adaptive Electronic Market-Maker," Computing in Economics and Finance 2001 146, Society for Computational Economics.
    14. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    15. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    16. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    17. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    18. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    19. Peter Bank & Ibrahim Ekren & Johannes Muhle-Karbe, 2018. "Liquidity in Competitive Dealer Markets," Papers 1807.08278, arXiv.org, revised Mar 2021.
    20. Peter Bank & Ibrahim Ekren & Johannes Muhle‐Karbe, 2021. "Liquidity in competitive dealer markets," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 827-856, July.
    21. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    22. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    2. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    3. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    4. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    5. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    6. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    7. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    8. Kühn, Christoph & Muhle-Karbe, Johannes, 2015. "Optimal liquidity provision," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2493-2515.
    9. Baron Law & Frederi Viens, 2019. "Market Making under a Weakly Consistent Limit Order Book Model," Papers 1903.07222, arXiv.org, revised Jan 2020.
    10. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    11. Marina Di Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2021. "Optimal order execution under price impact: A hybrid model," Papers 2112.02228, arXiv.org, revised Aug 2022.
    12. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    13. Hui Niu & Siyuan Li & Jiahao Zheng & Zhouchi Lin & Jian Li & Jian Guo & Bo An, 2023. "IMM: An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making," Papers 2308.08918, arXiv.org.
    14. Alexander Barzykin & Philippe Bergault & Olivier Guéant, 2023. "Algorithmic market making in dealer markets with hedging and market impact," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 41-79, January.
    15. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    16. M. Alessandra Crisafi & Andrea Macrina, 2015. "Dark-Pool Perspective of Optimal Market Making," Papers 1502.02863, arXiv.org.
    17. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    18. Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
    19. Yuheng Zheng & Zihan Ding, 2024. "Reinforcement Learning in High-frequency Market Making," Papers 2407.21025, arXiv.org, revised Aug 2024.
    20. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.07184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.