IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v26y2019i5p387-452.html
   My bibliography  Save this article

Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality

Author

Listed:
  • Olivier Guéant
  • Iuliia Manziuk

Abstract

In corporate bond markets, which are mainly OTC markets, market makers play a central role by providing bid and ask prices for bonds to asset managers. Determining the optimal bid and ask quotes that a market maker should set for a given universe of bonds is a complex task. The existing models, mostly inspired by the Avellaneda-Stoikov model, describe the complex optimization problem faced by market makers: proposing bid and ask prices for making money out of the difference between them while mitigating the market risk associated with holding inventory. While most of the models only tackle one-asset market making, they can often be generalized to a multi-asset framework. However, the problem of solving the equations characterizing the optimal bid and ask quotes numerically is seldom tackled in the literature, especially in high dimension. In this paper, we propose a numerical method for approximating the optimal bid and ask quotes over a large universe of bonds in a model à la Avellaneda–Stoikov. As classical finite difference methods cannot be used in high dimension, we present a discrete-time method inspired by reinforcement learning techniques, namely, a model-based deep actor-critic algorithm.

Suggested Citation

  • Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
  • Handle: RePEc:taf:apmtfi:v:26:y:2019:i:5:p:387-452
    DOI: 10.1080/1350486X.2020.1714455
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2020.1714455
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2020.1714455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:26:y:2019:i:5:p:387-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.