IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.17179.html
   My bibliography  Save this paper

Integrating Tick-level Data and Periodical Signal for High-frequency Market Making

Author

Listed:
  • Jiafa He
  • Cong Zheng
  • Can Yang

Abstract

We focus on the problem of market making in high-frequency trading. Market making is a critical function in financial markets that involves providing liquidity by buying and selling assets. However, the increasing complexity of financial markets and the high volume of data generated by tick-level trading makes it challenging to develop effective market making strategies. To address this challenge, we propose a deep reinforcement learning approach that fuses tick-level data with periodic prediction signals to develop a more accurate and robust market making strategy. Our results of market making strategies based on different deep reinforcement learning algorithms under the simulation scenarios and real data experiments in the cryptocurrency markets show that the proposed framework outperforms existing methods in terms of profitability and risk management.

Suggested Citation

  • Jiafa He & Cong Zheng & Can Yang, 2023. "Integrating Tick-level Data and Periodical Signal for High-frequency Market Making," Papers 2306.17179, arXiv.org.
  • Handle: RePEc:arx:papers:2306.17179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.17179
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    2. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    3. Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
    4. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    5. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    6. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    7. Xuefeng Gao & Yunhan Wang, 2020. "Optimal market making in the presence of latency," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1495-1512, September.
    8. Xuefeng Gao & Yunhan Wang, 2018. "Optimal Market Making in the Presence of Latency," Papers 1806.05849, arXiv.org, revised Mar 2020.
    9. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    10. Jonathan Sadighian, 2019. "Deep Reinforcement Learning in Cryptocurrency Market Making," Papers 1911.08647, arXiv.org.
    11. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    12. Nicholas T. Chan and Christian Shelton, 2001. "An Adaptive Electronic Market-Maker," Computing in Economics and Finance 2001 146, Society for Computational Economics.
    13. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    14. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    15. Yagna Patel, 2018. "Optimizing Market Making using Multi-Agent Reinforcement Learning," Papers 1812.10252, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    2. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    3. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    4. Hui Niu & Siyuan Li & Jiahao Zheng & Zhouchi Lin & Jian Li & Jian Guo & Bo An, 2023. "IMM: An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making," Papers 2308.08918, arXiv.org.
    5. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    6. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    7. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    8. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    9. Romuald Elie & Emmanuel Lépinette, 2015. "Approximate hedging for nonlinear transaction costs on the volume of traded assets," Finance and Stochastics, Springer, vol. 19(3), pages 541-581, July.
    10. Bruno Gav{s}perov & Zvonko Kostanjv{c}ar, 2022. "Deep Reinforcement Learning for Market Making Under a Hawkes Process-Based Limit Order Book Model," Papers 2207.09951, arXiv.org.
    11. Charles-Albert Lehalle, 2013. "Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading Process," Papers 1302.4592, arXiv.org.
    12. Antoine Jacquier & Hao Liu, 2017. "Optimal liquidation in a Level-I limit order book for large tick stocks," Papers 1701.01327, arXiv.org, revised Nov 2017.
    13. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    14. Álvaro Cartea & Leandro Sánchez-Betancourt, 2023. "Optimal execution with stochastic delay," Finance and Stochastics, Springer, vol. 27(1), pages 1-47, January.
    15. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    16. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    17. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    18. Xuefeng Gao & S. J. Deng, 2014. "Hydrodynamic limit of order book dynamics," Papers 1411.7502, arXiv.org, revised Feb 2016.
    19. Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.
    20. Felix J. Lopez-Iturriaga & Domingo Javier Santana-Martin, 2015. "Do Shareholder Coalitions Modify Dominant Owner's Control? The Impact On Dividend Policy," HSE Working papers WP BRP 41/FE/2015, National Research University Higher School of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.17179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.