IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.04941.html
   My bibliography  Save this paper

Get Real: Realism Metrics for Robust Limit Order Book Market Simulations

Author

Listed:
  • Svitlana Vyetrenko
  • David Byrd
  • Nick Petosa
  • Mahmoud Mahfouz
  • Danial Dervovic
  • Manuela Veloso
  • Tucker Hybinette Balch

Abstract

Machine learning (especially reinforcement learning) methods for trading are increasingly reliant on simulation for agent training and testing. Furthermore, simulation is important for validation of hand-coded trading strategies and for testing hypotheses about market structure. A challenge, however, concerns the robustness of policies validated in simulation because the simulations lack fidelity. In fact, researchers have shown that many market simulation approaches fail to reproduce statistics and stylized facts seen in real markets. As a step towards addressing this we surveyed the literature to collect a set of reference metrics and applied them to real market data and simulation output. Our paper provides a comprehensive catalog of these metrics including mathematical formulations where appropriate. Our results show that there are still significant discrepancies between simulated markets and real ones. However, this work serves as a benchmark against which we can measure future improvement.

Suggested Citation

  • Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
  • Handle: RePEc:arx:papers:1912.04941
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.04941
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.
    2. repec:hal:spmain:info:hdl:2441/3utlh0ehcn860pus6p2p683ade is not listed on IDEAS
    3. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2003. "Fluctuations and response in financial markets: the subtle nature of `random' price changes," Papers cond-mat/0307332, arXiv.org, revised Aug 2003.
    4. Ballocchi, Giuseppe & Dacorogna, Michel M. & Hopman, Carl M. & Muller, Ulrich A. & Olsen, Richard B., 1999. "The intraday multivariate structure of the Eurofutures markets," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 479-513, December.
    5. Gjerstad, Steven & Dickhaut, John, 1998. "Price Formation in Double Auctions," Games and Economic Behavior, Elsevier, vol. 22(1), pages 1-29, January.
    6. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    7. J. Doyne Farmer & Paolo Patelli & Ilija I. Zovko, 2003. "The Predictive Power of Zero Intelligence in Financial Markets," Papers cond-mat/0309233, arXiv.org, revised Feb 2004.
    8. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    9. David W. Lu, 2017. "Agent Inspired Trading Using Recurrent Reinforcement Learning and LSTM Neural Networks," Papers 1707.07338, arXiv.org.
    10. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    11. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    12. Gjerstad, Steven, 2007. "The competitive market paradox," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1753-1780, May.
    13. Zuliu Hu & Li Li, 1998. "Responses of the Stock Market to Macroeconomic Announcements Across Economic States," IMF Working Papers 1998/079, International Monetary Fund.
    14. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    15. Olivier Brandouy & Angelo Corelli & Iryna Veryzhenko & Roger Waldeck, 2012. "A re-examination of the “zero is enough” hypothesis in the emergence of financial stylized facts," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 223-248, October.
    16. Abergel,Frédéric & Anane,Marouane & Chakraborti,Anirban & Jedidi,Aymen & Muni Toke,Ioane, 2016. "Limit Order Books," Cambridge Books, Cambridge University Press, number 9781107163980, September.
    17. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    18. LeBaron, Blake & Yamamoto, Ryuichi, 2007. "Long-memory in an order-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 85-89.
    19. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    20. Vince Darley & Alexander V Outkin, 2007. "A NASDAQ Market Simulation:Insights on a Major Market from the Science of Complex Adaptive Systems," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6217, December.
    21. Frédéric Abergel & Anirban Chakraborti & Aymen Jedidi & Ioane Muni Toke & Marouane Anane, 2016. "Limit Order Books," Post-Print hal-02177394, HAL.
    22. Thierry Ané & Hélyette Geman, 2000. "Order Flow, Transaction Clock, and Normality of Asset Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2259-2284, October.
    23. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    24. David Byrd, 2019. "Explaining Agent-Based Financial Market Simulation," Papers 1909.11650, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    2. Selim Amrouni & Aymeric Moulin & Tucker Balch, 2022. "CTMSTOU driven markets: simulated environment for regime-awareness in trading policies," Papers 2202.00941, arXiv.org, revised Feb 2022.
    3. Christopher J. Cho & Timothy J. Norman & Manuel Nunes, 2023. "PRIME: A Price-Reverting Impact Model of a cryptocurrency Exchange," Papers 2305.07559, arXiv.org.
    4. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    5. Michael Karpe & Jin Fang & Zhongyao Ma & Chen Wang, 2020. "Multi-Agent Reinforcement Learning in a Realistic Limit Order Book Market Simulation," Papers 2006.05574, arXiv.org, revised Sep 2020.
    6. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    7. Selim Amrouni & Aymeric Moulin & Jared Vann & Svitlana Vyetrenko & Tucker Balch & Manuela Veloso, 2021. "ABIDES-Gym: Gym Environments for Multi-Agent Discrete Event Simulation and Application to Financial Markets," Papers 2110.14771, arXiv.org.
    8. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. Xintong Wang & Christopher Hoang & Yevgeniy Vorobeychik & Michael P. Wellman, 2021. "Spoofing the Limit Order Book: A Strategic Agent-Based Analysis," Games, MDPI, vol. 12(2), pages 1-43, May.
    3. Hamza Bodor & Laurent Carlier, 2024. "Stylized Facts and Market Microstructure: An In-Depth Exploration of German Bond Futures Market," Papers 2401.10722, arXiv.org.
    4. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    5. Alexandru Mandes, 2014. "Order Placement in a Continuous Double Auction Agent Based Model," MAGKS Papers on Economics 201443, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. Andrea Coletta & Matteo Prata & Michele Conti & Emanuele Mercanti & Novella Bartolini & Aymeric Moulin & Svitlana Vyetrenko & Tucker Balch, 2021. "Towards Realistic Market Simulations: a Generative Adversarial Networks Approach," Papers 2110.13287, arXiv.org.
    7. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    8. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    9. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    10. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    11. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    12. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    13. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    14. Alexander Lykov & Stepan Muzychka & Kirill Vaninsky, 2016. "Investor'S Sentiment In Multi-Agent Model Of The Continuous Double Auction," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-29, September.
    15. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    16. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    17. Zijian Shi & John Cartlidge, 2023. "Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid Methodology," Papers 2303.00080, arXiv.org.
    18. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.
    19. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    20. Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022. "Heterogeneous speculators and stock market dynamics: a simple agent-based computational model," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.
    21. Dicks, Matthew & Paskaramoorthy, Andrew & Gebbie, Tim, 2024. "A simple learning agent interacting with an agent-based market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    22. Colin M. Van Oort & Ethan Ratliff-Crain & Brian F. Tivnan & Safwan Wshah, 2023. "Adaptive Agents and Data Quality in Agent-Based Financial Markets," Papers 2311.15974, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.04941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.