IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i21p8114-d439465.html
   My bibliography  Save this article

Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments

Author

Listed:
  • Jos Lelieveld

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany
    The Cyprus Institute, Climate and Atmosphere Research Center, 2121 Nicosia, Cyprus)

  • Frank Helleis

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

  • Stephan Borrmann

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

  • Yafang Cheng

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

  • Frank Drewnick

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

  • Gerald Haug

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

  • Thomas Klimach

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

  • Jean Sciare

    (The Cyprus Institute, Climate and Atmosphere Research Center, 2121 Nicosia, Cyprus)

  • Hang Su

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

  • Ulrich Pöschl

    (Max Planck Institute for Chemistry, 55128 Mainz, Germany)

Abstract

The role of aerosolized SARS-CoV-2 viruses in airborne transmission of COVID-19 has been debated. The aerosols are transmitted through breathing and vocalization by infectious subjects. Some authors state that this represents the dominant route of spreading, while others dismiss the option. Here we present an adjustable algorithm to estimate the infection risk for different indoor environments, constrained by published data of human aerosol emissions, SARS-CoV-2 viral loads, infective dose and other parameters. We evaluate typical indoor settings such as an office, a classroom, choir practice, and a reception/party. Our results suggest that aerosols from highly infective subjects can effectively transmit COVID-19 in indoor environments. This “highly infective” category represents approximately 20% of the patients who tested positive for SARS-CoV-2. We find that “super infective” subjects, representing the top 5–10% of subjects with a positive test, plus an unknown fraction of less—but still highly infective, high aerosol-emitting subjects—may cause COVID-19 clusters (>10 infections). In general, active room ventilation and the ubiquitous wearing of face masks (i.e., by all subjects) may reduce the individual infection risk by a factor of five to ten, similar to high-volume, high-efficiency particulate air (HEPA) filtering. A particularly effective mitigation measure is the use of high-quality masks, which can drastically reduce the indoor infection risk through aerosols.

Suggested Citation

  • Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:8114-:d:439465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/21/8114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/21/8114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    2. Angelo Spena & Leonardo Palombi & Massimo Corcione & Mariachiara Carestia & Vincenzo Andrea Spena, 2020. "On the Optimal Indoor Air Conditions for SARS-CoV-2 Inactivation. An Enthalpy-Based Approach," IJERPH, MDPI, vol. 17(17), pages 1-15, August.
    3. Sauro Salomoni & Wolbert van den Hoorn & Paul Hodges, 2016. "Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    4. Colin J. Worby & Hsiao-Han Chang, 2020. "Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    6. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristijan Lavtižar & Alenka Fikfak & Rok Fink, 2023. "Overlooked Impacts of Urban Environments on the Air Quality in Naturally Ventilated Schools Amid the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    2. Stephen Bok & Daniel E. Martin & Erik Acosta & Maria Lee & James Shum, 2021. "Validation of the COVID-19 Transmission Misinformation Scale and Conditional Indirect Negative Effects on Wearing a Mask in Public," IJERPH, MDPI, vol. 18(21), pages 1-23, October.
    3. Henri Salmenjoki & Marko Korhonen & Antti Puisto & Ville Vuorinen & Mikko J Alava, 2021. "Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-12, November.
    4. Thomas Harweg & Mathias Wagner & Frank Weichert, 2022. "Agent-Based Simulation for Infectious Disease Modelling over a Period of Multiple Days, with Application to an Airport Scenario," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    5. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    6. Birte Knobling & Gefion Franke & Lisa Beike & Timo Dickhuth & Johannes K. Knobloch, 2022. "Reading the Score of the Air—Change in Airborne Microbial Load in Contrast to Particulate Matter during Music Making," IJERPH, MDPI, vol. 19(16), pages 1-13, August.
    7. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    8. Lukas Siebler & Maurizio Calandri & Torben Rathje & Konstantinos Stergiaropoulos, 2022. "Experimental Methods of Investigating Airborne Indoor Virus-Transmissions Adapted to Several Ventilation Measures," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    9. Sergio A. Chillon & Mikel Millan & Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Xabier Mendaza-Sagastizabal, 2021. "Natural Ventilation Characterization in a Classroom under Different Scenarios," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    10. Sonja Jäckle & Elias Röger & Volker Dicken & Benjamin Geisler & Jakob Schumacher & Max Westphal, 2021. "A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    11. Wolfgang Schade & Vladislav Reimer & Martin Seipenbusch & Ulrike Willer, 2021. "Experimental Investigation of Aerosol and CO 2 Dispersion for Evaluation of COVID-19 Infection Risk in a Concert Hall," IJERPH, MDPI, vol. 18(6), pages 1-11, March.
    12. Martin Kriegel & Anne Hartmann & Udo Buchholz & Janna Seifried & Sigrid Baumgarte & Petra Gastmeier, 2021. "SARS-CoV-2 Aerosol Transmission Indoors: A Closer Look at Viral Load, Infectivity, the Effectiveness of Preventive Measures and a Simple Approach for Practical Recommendations," IJERPH, MDPI, vol. 19(1), pages 1-31, December.
    13. Pollozhani, Fatos & McLeod, Robert S. & Schwarzbauer, Christian & Hopfe, Christina J., 2024. "Assessing school ventilation strategies from the perspective of health, environment, and energy," Applied Energy, Elsevier, vol. 353(PA).
    14. Lara Moeller & Florian Wallburg & Felix Kaule & Stephan Schoenfelder, 2022. "Numerical Flow Simulation on the Virus Spread of SARS-CoV-2 Due to Airborne Transmission in a Classroom," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
    15. Tareq Hussein & Jakob Löndahl & Sara Thuresson & Malin Alsved & Afnan Al-Hunaiti & Kalle Saksela & Hazem Aqel & Heikki Junninen & Alexander Mahura & Markku Kulmala, 2021. "Indoor Model Simulation for COVID-19 Transport and Exposure," IJERPH, MDPI, vol. 18(6), pages 1-16, March.
    16. Junsik Park & Gurjoong Kim, 2022. "Social Efficiency of Public Transportation Policy in Response to COVID-19: Model Development and Application to Intercity Buses in Seoul Metropolitan Area," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    17. Shirley Gee Hoon Tang & Muhamad Haziq Hasnul Hadi & Siti Rosilah Arsad & Pin Jern Ker & Santhi Ramanathan & Nayli Aliah Mohd Afandi & Madihah Mohd Afzal & Mei Wyin Yaw & Prajindra Sankar Krishnan & Ch, 2022. "Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate," IJERPH, MDPI, vol. 19(20), pages 1-38, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    2. Niklas Kappelt & Hugo Savill Russell & Szymon Kwiatkowski & Alireza Afshari & Matthew Stanley Johnson, 2021. "Correlation of Respiratory Aerosols and Metabolic Carbon Dioxide," Sustainability, MDPI, vol. 13(21), pages 1-11, November.
    3. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    5. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    6. Lisa Cariani & Beatrice Silvia Orena & Federico Ambrogi & Simone Gambazza & Anna Maraschini & Antonella Dodaro & Massimo Oggioni & Annarosa Orlandi & Alessia Pirrone & Sara Uceda Renteria & Mara Berna, 2020. "Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    7. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Lorenz Schubert & Robert Strassl & Heinz Burgmann & Gabriella Dvorak & Matthias Karer & Michael Kundi & Manuel Kussmann & Heimo Lagler & Felix Lötsch & Christopher Milacek & Markus Obermueller & Zoe O, 2021. "A Longitudinal Seroprevalence Study Evaluating Infection Control and Prevention Strategies at a Large Tertiary Care Center with Low COVID-19 Incidence," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
    9. Susanna Esposito & Federico Marchetti & Marcello Lanari & Fabio Caramelli & Alessandro De Fanti & Gianluca Vergine & Lorenzo Iughetti & Martina Fornaro & Agnese Suppiej & Stefano Zona & Andrea Pession, 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy," IJERPH, MDPI, vol. 18(8), pages 1-29, April.
    10. Ramon Roozendaal & Laura Solforosi & Daniel J. Stieh & Jan Serroyen & Roel Straetemans & Anna Dari & Muriel Boulton & Frank Wegmann & Sietske K. Rosendahl Huber & Joan E. M. van der Lubbe & Jenny Hend, 2021. "SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Shengwei Zhu & Tong Lin & John D. Spengler & Jose Guillermo Cedeño Laurent & Jelena Srebric, 2022. "The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    12. Sasha Harris-Lovett & Kara L. Nelson & Paloma Beamer & Heather N. Bischel & Aaron Bivins & Andrea Bruder & Caitlyn Butler & Todd D. Camenisch & Susan K. De Long & Smruthi Karthikeyan & David A. Larsen, 2021. "Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    13. Juan Liu & Fengfeng Mao & Jianhe Chen & Shuaiyao Lu & Yonghe Qi & Yinyan Sun & Linqiang Fang & Man Lung Yeung & Chunmei Liu & Guimei Yu & Guangyu Li & Ximing Liu & Yuansheng Yao & Panpan Huang & Dongx, 2023. "An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    15. Kumawat, Nitesh & Rashid, Mubasher & Srivastava, Akriti & Tripathi, Jai Prakash, 2023. "Hysteresis and Hopf bifurcation: Deciphering the dynamics of an in-host model of SARS-CoV-2 with logistic target cell growth and sigmoidal immune response," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    17. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    18. Patrick T. Acer & Lauren M. Kelly & Andrew A. Lover & Caitlyn S. Butler, 2022. "Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    19. Afnan Al Agha & Safiya Alshehaiween & Ahmed Elaiw & Matuka Alshaikh, 2021. "A Global Analysis of Delayed SARS-CoV-2/Cancer Model with Immune Response," Mathematics, MDPI, vol. 9(11), pages 1-27, June.
    20. Simin Zou & Xuhui He, 2021. "Effect of Train-Induced Wind on the Transmission of COVID-19: A New Insight into Potential Infectious Risks," IJERPH, MDPI, vol. 18(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:8114-:d:439465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.