IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p545-d1018539.html
   My bibliography  Save this article

Agent-Based Simulation for Infectious Disease Modelling over a Period of Multiple Days, with Application to an Airport Scenario

Author

Listed:
  • Thomas Harweg

    (Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 16, 44227 Dortmund, North Rhine-Westphalia, Germany)

  • Mathias Wagner

    (Department of Pathology, University of Saarland Medical School, Homburg Saar Campus, Kirrberger Strasse 100, 66424 Homburg Saar, Saarland, Germany)

  • Frank Weichert

    (Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 16, 44227 Dortmund, North Rhine-Westphalia, Germany)

Abstract

With the COVID-19 pandemic, the role of infectious disease spreading in public places has been brought into focus more than ever. Places that are of particular interest regarding the spread of infectious diseases are international airport terminals, not only for the protection of staff and ground crew members but also to help minimize the risk of the spread of infectious entities such as COVID-19 around the globe. Computational modelling and simulation can help in understanding and predicting the spreading of infectious diseases in any such scenario. In this paper, we propose a model, which combines a simulation of high geometric detail regarding virus spreading with an account of the temporal progress of infection dynamics. We, thus, introduce an agent-based social force model for tracking the spread of infectious diseases by modelling aerosol traces and concentration of virus load in the air. We complement this agent-based model to have consistency over a period of several days. We then apply this model to investigate simulations in a realistic airport setting with multiple virus variants of varying contagiousness. According to our experiments, a virus variant has to be at least twelve times more contagious than the respective control to result in a level of infection of more than 30%. Combinations of agent-based models with temporal components can be valuable tools in an attempt to assess the risk of infection attributable to a particular virus and its variants.

Suggested Citation

  • Thomas Harweg & Mathias Wagner & Frank Weichert, 2022. "Agent-Based Simulation for Infectious Disease Modelling over a Period of Multiple Days, with Application to an Airport Scenario," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:545-:d:1018539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edilson F Arruda & Shyam S Das & Claudia M Dias & Dayse H Pastore, 2021. "Modelling and optimal control of multi strain epidemics, with application to COVID-19," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    2. Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    2. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    3. Junsik Park & Gurjoong Kim, 2022. "Social Efficiency of Public Transportation Policy in Response to COVID-19: Model Development and Application to Intercity Buses in Seoul Metropolitan Area," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    4. Omame, Andrew & Abbas, Mujahid & Din, Anwarud, 2023. "Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 302-336.
    5. Birte Knobling & Gefion Franke & Lisa Beike & Timo Dickhuth & Johannes K. Knobloch, 2022. "Reading the Score of the Air—Change in Airborne Microbial Load in Contrast to Particulate Matter during Music Making," IJERPH, MDPI, vol. 19(16), pages 1-13, August.
    6. Pollozhani, Fatos & McLeod, Robert S. & Schwarzbauer, Christian & Hopfe, Christina J., 2024. "Assessing school ventilation strategies from the perspective of health, environment, and energy," Applied Energy, Elsevier, vol. 353(PA).
    7. Henri Salmenjoki & Marko Korhonen & Antti Puisto & Ville Vuorinen & Mikko J Alava, 2021. "Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-12, November.
    8. de León, Ugo Avila-Ponce & Avila-Vales, Eric & Huang, Kuan-lin, 2022. "Modeling COVID-19 dynamic using a two-strain model with vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Wolfgang Schade & Vladislav Reimer & Martin Seipenbusch & Ulrike Willer, 2021. "Experimental Investigation of Aerosol and CO 2 Dispersion for Evaluation of COVID-19 Infection Risk in a Concert Hall," IJERPH, MDPI, vol. 18(6), pages 1-11, March.
    10. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    11. Stephen Bok & Daniel E. Martin & Erik Acosta & Maria Lee & James Shum, 2021. "Validation of the COVID-19 Transmission Misinformation Scale and Conditional Indirect Negative Effects on Wearing a Mask in Public," IJERPH, MDPI, vol. 18(21), pages 1-23, October.
    12. Martin Kriegel & Anne Hartmann & Udo Buchholz & Janna Seifried & Sigrid Baumgarte & Petra Gastmeier, 2021. "SARS-CoV-2 Aerosol Transmission Indoors: A Closer Look at Viral Load, Infectivity, the Effectiveness of Preventive Measures and a Simple Approach for Practical Recommendations," IJERPH, MDPI, vol. 19(1), pages 1-31, December.
    13. Lukas Siebler & Maurizio Calandri & Torben Rathje & Konstantinos Stergiaropoulos, 2022. "Experimental Methods of Investigating Airborne Indoor Virus-Transmissions Adapted to Several Ventilation Measures," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    14. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.
    15. Jiraporn Lamwong & Puntani Pongsumpun & I-Ming Tang & Napasool Wongvanich, 2022. "Vaccination’s Role in Combating the Omicron Variant Outbreak in Thailand: An Optimal Control Approach," Mathematics, MDPI, vol. 10(20), pages 1-29, October.
    16. Shirley Gee Hoon Tang & Muhamad Haziq Hasnul Hadi & Siti Rosilah Arsad & Pin Jern Ker & Santhi Ramanathan & Nayli Aliah Mohd Afandi & Madihah Mohd Afzal & Mei Wyin Yaw & Prajindra Sankar Krishnan & Ch, 2022. "Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate," IJERPH, MDPI, vol. 19(20), pages 1-38, October.
    17. Kristijan Lavtižar & Alenka Fikfak & Rok Fink, 2023. "Overlooked Impacts of Urban Environments on the Air Quality in Naturally Ventilated Schools Amid the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    18. Sergio A. Chillon & Mikel Millan & Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Xabier Mendaza-Sagastizabal, 2021. "Natural Ventilation Characterization in a Classroom under Different Scenarios," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    19. Sonja Jäckle & Elias Röger & Volker Dicken & Benjamin Geisler & Jakob Schumacher & Max Westphal, 2021. "A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    20. Giorgio Bagarella & Mauro Maistrello & Maddalena Minoja & Olivia Leoni & Francesco Bortolan & Danilo Cereda & Giovanni Corrao, 2022. "Early Detection of SARS-CoV-2 Epidemic Waves: Lessons from the Syndromic Surveillance in Lombardy, Italy," IJERPH, MDPI, vol. 19(19), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:545-:d:1018539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.