IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924011299.html
   My bibliography  Save this article

Coevolution of non-pharmaceutical interventions and infectious disease spreading in age-structured populations

Author

Listed:
  • Li, Wenjie
  • Gu, Wenbin
  • Li, Jiachen
  • Xin, Yu
  • Liu, Hao
  • Su, Sheng
  • Wang, Wei

Abstract

In the face of emerging major infectious diseases, non-pharmaceutical interventions (NPIs) such as mask-wearing are the primary means of disease control in the early stages due to the lack of effective pharmaceutical interventions. Yet the current understanding of the dynamic feedback loop between NPIs and infectious disease spreading remains limited. In this study, we proposed an asymmetrically coupled dynamic model of the coevolution of mask-wearing behaviour and infectious disease spreading in an age-structured population to describe the bidirectional relationship between NPIs such as mask-wearing and infectious disease spreading. A theoretical analysis framework was developed by extending the microscopic Markov chain method. To reflect the spreading process more realistically, we conducted numerical simulations from a mesoscopic perspective through an age-contact data-driven approach. Critical transition, multi-wave epidemics, multi-transitions, and mixed-phase transitions resulting from the coevolution of mask and disease are observed. The results highlight the critical role of NPIs in controlling disease spreading. The mask-wearing can effectively reduce the daily peak infection density and prevent large-scale outbreaks within a short period. However, it will also prolong the duration of the epidemic and cause the disease to exist in the population for a long time. There is a trade-off between the two. For certain diseases with specific spreading capabilities, pharmaceutical interventions such as vaccination, which can directly reduce the disease’s infectiousness, may result in more people being infected if NPIs are not implemented as early as possible. In addition, results from Anhui indicate that people aged 42 years are at high risk of being infected because of their large population base, which suggests that priority should be given to the prevention and control of this group.

Suggested Citation

  • Li, Wenjie & Gu, Wenbin & Li, Jiachen & Xin, Yu & Liu, Hao & Su, Sheng & Wang, Wei, 2024. "Coevolution of non-pharmaceutical interventions and infectious disease spreading in age-structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011299
    DOI: 10.1016/j.chaos.2024.115577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Assar Lindbeck & Sten Nyberg & Jörgen W. Weibull, 1999. "Social Norms and Economic Incentives in the Welfare State," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 1-35.
    2. Campos-Mercade, Pol & Meier, Armando N. & Schneider, Florian H. & Wengström, Erik, 2021. "Prosociality predicts health behaviors during the COVID-19 pandemic," Journal of Public Economics, Elsevier, vol. 195(C).
    3. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    4. Jay J. Van Bavel & Katherine Baicker & Paulo S. Boggio & Valerio Capraro & Aleksandra Cichocka & Mina Cikara & Molly J. Crockett & Alia J. Crum & Karen M. Douglas & James N. Druckman & John Drury & Oe, 2020. "Using social and behavioural science to support COVID-19 pandemic response," Nature Human Behaviour, Nature, vol. 4(5), pages 460-471, May.
    5. Marco Pangallo & Alberto Aleta & R. Maria del Rio-Chanona & Anton Pichler & David Martín-Corral & Matteo Chinazzi & François Lafond & Marco Ajelli & Esteban Moro & Yamir Moreno & Alessandro Vespignani, 2024. "The unequal effects of the health–economy trade-off during the COVID-19 pandemic," Nature Human Behaviour, Nature, vol. 8(2), pages 264-275, February.
    6. Shengjie Lai & Nick W. Ruktanonchai & Liangcai Zhou & Olivia Prosper & Wei Luo & Jessica R. Floyd & Amy Wesolowski & Mauricio Santillana & Chi Zhang & Xiangjun Du & Hongjie Yu & Andrew J. Tatem, 2020. "Effect of non-pharmaceutical interventions to contain COVID-19 in China," Nature, Nature, vol. 585(7825), pages 410-413, September.
    7. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    8. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    9. Dina Mistry & Maria Litvinova & Ana Pastore y Piontti & Matteo Chinazzi & Laura Fumanelli & Marcelo F. C. Gomes & Syed A. Haque & Quan-Hui Liu & Kunpeng Mu & Xinyue Xiong & M. Elizabeth Halloran & Ira, 2021. "Inferring high-resolution human mixing patterns for disease modeling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Li, Wenjie & Li, Jiachen & Nie, Yanyi & Lin, Tao & Chen, Yu & Liu, Xiaoyang & Su, Sheng & Wang, Wei, 2024. "Infectious disease spreading modeling and containing strategy in heterogeneous population," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    12. Maffioli, Elisa M., 2021. "The political economy of health epidemics: Evidence from the Ebola outbreak," Journal of Development Economics, Elsevier, vol. 151(C).
    13. Toxvaerd, F.M.O, 2020. "Equilibrium Social Distancing," Cambridge Working Papers in Economics 2021, Faculty of Economics, University of Cambridge.
    14. Solomon Hsiang & Daniel Allen & Sébastien Annan-Phan & Kendon Bell & Ian Bolliger & Trinetta Chong & Hannah Druckenmiller & Luna Yue Huang & Andrew Hultgren & Emma Krasovich & Peiley Lau & Jaecheol Le, 2020. "The effect of large-scale anti-contagion policies on the COVID-19 pandemic," Nature, Nature, vol. 584(7820), pages 262-267, August.
    15. Li, Zhaoqing & Deng, Zhenghong & Han, Zhen & Alfaro-Bittner, Karin & Barzel, Baruch & Boccaletti, Stefano, 2021. "Contagion in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    2. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    3. Jesper Akesson & Sam Ashworth-Hayes & Robert Hahn & Robert Metcalfe & Itzhak Rasooly, 2022. "Fatalism, beliefs, and behaviors during the COVID-19 pandemic," Journal of Risk and Uncertainty, Springer, vol. 64(2), pages 147-190, April.
    4. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    5. Yasushi Iwamoto, 2021. "Welfare economics of managing an epidemic: an exposition," The Japanese Economic Review, Springer, vol. 72(4), pages 537-579, October.
    6. Cécile Aubert & Emmanuelle Augeraud-Véron, 2021. "The relative power of individual distancing efforts and public policies to curb the COVID-19 epidemics," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    7. Abdin, Adam F. & Fang, Yi-Ping & Caunhye, Aakil & Alem, Douglas & Barros, Anne & Zio, Enrico, 2023. "An optimization model for planning testing and control strategies to limit the spread of a pandemic – The case of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 308-324.
    8. Andersson, Ola & Campos-Mercade, Pol & Meier, Armando N. & Wengström, Erik, 2021. "Anticipation of COVID-19 vaccines reduces willingness to socially distance," Journal of Health Economics, Elsevier, vol. 80(C).
    9. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    10. M. Alper Çenesiz & Luís Guimarães, 2022. "COVID‐19: What if immunity wanes?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 626-664, February.
    11. Alberto Bisin & Andrea Moro, 2020. "Learning Epidemiology by Doing: The Empirical Implications of a Spatial-SIR Model with Behavioral Responses," NBER Working Papers 27590, National Bureau of Economic Research, Inc.
    12. Hamed Amini & Andreea Minca, 2022. "Epidemic Spreading and Equilibrium Social Distancing in Heterogeneous Networks," Dynamic Games and Applications, Springer, vol. 12(1), pages 258-287, March.
    13. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    14. Basu Parantap & Bell Clive & Edwards Terence Huw, 2022. "COVID Social Distancing and the Poor: An Analysis of the Evidence for England," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 211-240, January.
    15. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    17. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    18. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    19. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.