IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i13p4877-d381133.html
   My bibliography  Save this article

The Outcome and Implications of Public Precautionary Measures in Taiwan–Declining Respiratory Disease Cases in the COVID-19 Pandemic

Author

Listed:
  • Chih-Chia Hsieh

    (Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan 701401, Taiwan)

  • Chih-Hao Lin

    (Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan 701401, Taiwan)

  • William Yu Chung Wang

    (Waikato Management School, University of Waikato, Hamilton 3210, New Zealand)

  • David J. Pauleen

    (School of Management, Massey University, Auckland 0745, New Zealand)

  • Jengchung Victor Chen

    (Institute of International Management, National Cheng Kung University, Tainan 701401, Taiwan)

Abstract

With the rapid development of the COVID-19 pandemic, countries are trying to cope with increasing medical demands, and, at the same time, to reduce the increase of infected numbers by implementing a number of public health measures, namely non-pharmaceutical interventions (NPIs). These public health measures can include social distancing, frequent handwashing, and personal protective equipment (PPE) at the personal level; at the community and the government level, these measures can range from canceling activities, avoiding mass gatherings, closing facilities, and, at the extreme, enacting national or provincial lockdowns. Rather than completely stopping the infectious disease, the major purpose of these NPIs in facing an emerging infectious disease is to reduce the contact rate within the population, and reduce the spread of the virus until the time a vaccine or reliable medications become available. The idea is to avoid a surge of patients with severe symptoms beyond the capacity of the hospitals’ medical resources, which would lead to more mortality and morbidity. While many countries have experienced steep curves in new cases, some, including Hong Kong, Vietnam, South Korea, New Zealand, and Taiwan, seem to have controlled or even eliminated the infection locally. From its first case of COVID-19 on the 21 January until the 12 May, Taiwan had 440 cases, including just 55 local infections, and seven deaths in total, representing 1.85 cases per 100,000 population and a 1.5% death rate (based on the Worldometer 2020 statistics of Taiwan’s population of 23.8 million). This paper presents evidence that spread prevention involving mass masking and universal hygiene at the early stage of the COVID-19 pandemic resulted in a 50% decline of infectious respiratory diseases, based on historical data during the influenza season in Taiwan. These outcomes provide potential support for the effectiveness of widely implementing public health precaution measures in controlling COVID-19 without a lockdown policy.

Suggested Citation

  • Chih-Chia Hsieh & Chih-Hao Lin & William Yu Chung Wang & David J. Pauleen & Jengchung Victor Chen, 2020. "The Outcome and Implications of Public Precautionary Measures in Taiwan–Declining Respiratory Disease Cases in the COVID-19 Pandemic," IJERPH, MDPI, vol. 17(13), pages 1-10, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4877-:d:381133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/13/4877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/13/4877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    2. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    3. Emanuele Torri & Luca Gino Sbrogiò & Enrico Di Rosa & Sandro Cinquetti & Fausto Francia & Antonio Ferro, 2020. "Italian Public Health Response to the COVID-19 Pandemic: Case Report from the Field, Insights and Challenges for the Department of Prevention," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Antonia De Francesco & Caterina Pollara & Franco Gargiulo & Mauro Giacomelli & Arnaldo Caruso, 2021. "Circulation of Respiratory Viruses in Hospitalized Adults before and during the COVID-19 Pandemic in Brescia, Italy: A Retrospective Study," IJERPH, MDPI, vol. 18(18), pages 1-10, September.
    2. Luigi Matera & Raffaella Nenna & Francesca Ardenti Morini & Giuseppe Banderali & Mauro Calvani & Matteo Calvi & Giorgio Cozzi & Raffaele Falsaperla & Roberto Guidi & Ahmad Kantar & Marcello Lanari & R, 2021. "Effects of Relaxed Lockdown on Pediatric ER Visits during SARS-CoV-2 Pandemic in Italy," IJERPH, MDPI, vol. 18(18), pages 1-11, September.
    3. Chien-Lung Chan & Chi-Chang Chang, 2020. "Big Data, Decision Models, and Public Health," IJERPH, MDPI, vol. 17(18), pages 1-7, September.
    4. Chien-Lung Chan & Chi-Chang Chang, 2022. "Big Data, Decision Models, and Public Health," IJERPH, MDPI, vol. 19(14), pages 1-9, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    3. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    4. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    5. Lisa Cariani & Beatrice Silvia Orena & Federico Ambrogi & Simone Gambazza & Anna Maraschini & Antonella Dodaro & Massimo Oggioni & Annarosa Orlandi & Alessia Pirrone & Sara Uceda Renteria & Mara Berna, 2020. "Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    6. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Lorenz Schubert & Robert Strassl & Heinz Burgmann & Gabriella Dvorak & Matthias Karer & Michael Kundi & Manuel Kussmann & Heimo Lagler & Felix Lötsch & Christopher Milacek & Markus Obermueller & Zoe O, 2021. "A Longitudinal Seroprevalence Study Evaluating Infection Control and Prevention Strategies at a Large Tertiary Care Center with Low COVID-19 Incidence," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
    8. Susanna Esposito & Federico Marchetti & Marcello Lanari & Fabio Caramelli & Alessandro De Fanti & Gianluca Vergine & Lorenzo Iughetti & Martina Fornaro & Agnese Suppiej & Stefano Zona & Andrea Pession, 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy," IJERPH, MDPI, vol. 18(8), pages 1-29, April.
    9. Ramon Roozendaal & Laura Solforosi & Daniel J. Stieh & Jan Serroyen & Roel Straetemans & Anna Dari & Muriel Boulton & Frank Wegmann & Sietske K. Rosendahl Huber & Joan E. M. van der Lubbe & Jenny Hend, 2021. "SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Shengwei Zhu & Tong Lin & John D. Spengler & Jose Guillermo Cedeño Laurent & Jelena Srebric, 2022. "The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    11. Sasha Harris-Lovett & Kara L. Nelson & Paloma Beamer & Heather N. Bischel & Aaron Bivins & Andrea Bruder & Caitlyn Butler & Todd D. Camenisch & Susan K. De Long & Smruthi Karthikeyan & David A. Larsen, 2021. "Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    12. Juan Liu & Fengfeng Mao & Jianhe Chen & Shuaiyao Lu & Yonghe Qi & Yinyan Sun & Linqiang Fang & Man Lung Yeung & Chunmei Liu & Guimei Yu & Guangyu Li & Ximing Liu & Yuansheng Yao & Panpan Huang & Dongx, 2023. "An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    14. Kumawat, Nitesh & Rashid, Mubasher & Srivastava, Akriti & Tripathi, Jai Prakash, 2023. "Hysteresis and Hopf bifurcation: Deciphering the dynamics of an in-host model of SARS-CoV-2 with logistic target cell growth and sigmoidal immune response," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    16. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    17. Patrick T. Acer & Lauren M. Kelly & Andrew A. Lover & Caitlyn S. Butler, 2022. "Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    18. Afnan Al Agha & Safiya Alshehaiween & Ahmed Elaiw & Matuka Alshaikh, 2021. "A Global Analysis of Delayed SARS-CoV-2/Cancer Model with Immune Response," Mathematics, MDPI, vol. 9(11), pages 1-27, June.
    19. Simin Zou & Xuhui He, 2021. "Effect of Train-Induced Wind on the Transmission of COVID-19: A New Insight into Potential Infectious Risks," IJERPH, MDPI, vol. 18(15), pages 1-17, August.
    20. Ioana Boeraș & Angela Curtean-Bănăduc & Doru Bănăduc & Gabriela Cioca, 2022. "Anthropogenic Sewage Water Circuit as Vector for SARS-CoV-2 Viral ARN Transport and Public Health Assessment, Monitoring and Forecasting—Sibiu Metropolitan Area (Transylvania/Romania) Study Case," IJERPH, MDPI, vol. 19(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4877-:d:381133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.