IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i8p3919-d532440.html
   My bibliography  Save this article

COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy

Author

Listed:
  • Susanna Esposito

    (Paediatric Clinic, Department of Medicine and Surgery, University Hospital, 43126 Parma, Italy)

  • Federico Marchetti

    (Paediatrics and Neonatology Unit, Ravenna Hospital, AUSL Romagna, 48121 Ravenna, Italy)

  • Marcello Lanari

    (Paediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy)

  • Fabio Caramelli

    (Paediatric Intensive Care Unit, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy)

  • Alessandro De Fanti

    (Paediatrics Unit, Santa Maria Nuova Hospital, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy)

  • Gianluca Vergine

    (Paediatrics Unit, AUSL Romagna, 47921 Rimini, Italy)

  • Lorenzo Iughetti

    (Paediatric Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy)

  • Martina Fornaro

    (Paediatrics Unit, G.B. Morgagni—L. Pierantoni, AUSL Romagna, 47121 Forlì, Italy)

  • Agnese Suppiej

    (Paediatric Clinic, University of Ferrara, 44124 Ferrara, Italy)

  • Stefano Zona

    (AUSL Modena, 41121 Modena, Italy)

  • Andrea Pession

    (Paediatric Unit, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy)

  • Giacomo Biasucci

    (Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy)

  • on behalf of the Working Group on COVID-19 in Pediatrics of the Emilia-Romagna Region (RE-CO-Ped)

    (Membership of the Working Group on COVID-19 in Pediatrics of the Emilia-Romagna Region (RE-CO-Ped) is provided in the Acknowledgments.)

Abstract

Since December 2019, coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread, becoming the first pandemic of the 21st century by number of deaths (over 2,000,000 worldwide). Many aspects of SARS-CoV-2 infection in children and adolescents remain unclear, and optimal treatment has not yet been defined. Therefore, our goal was to develop a consensus document, practically synthesizing the accumulated data and clinical experience of our expert group. Literature research was carried out using the keywords “COVID-19” or “SARS-CoV-2” and “children” or “pediatrics” and “prevention” or “diagnosis” or “MIS-C” or “treatment” in electronic databases (MEDLINE, PUBMED), existing guidelines and gray literature. The fact that the majority of the problems posed by SARS-CoV-2 infection in pediatric age do not need hospital care and that, therefore, infected children and adolescents can be managed at home highlights the need for a strengthening of territorial pediatric structures. The sharing of hospitalization and therapeutic management criteria for severe cases between professionals is essential to ensure a fair approach based on the best available knowledge. Moreover, the activity of social and health professionals must also include the description, management and limitation of psychophysical-relational damage resulting from the SARS-CoV-2 pandemic on the health of children and adolescents, whether or not affected by COVID-19. Due to the characteristics of COVID-19 pathology in pediatric age, the importance of strengthening the network between hospital and territorial pediatrics, school, educational, social and family personnel both for strictly clinical management and for the reduction in discomfort, with priority in children of more frail families, represents a priority.

Suggested Citation

  • Susanna Esposito & Federico Marchetti & Marcello Lanari & Fabio Caramelli & Alessandro De Fanti & Gianluca Vergine & Lorenzo Iughetti & Martina Fornaro & Agnese Suppiej & Stefano Zona & Andrea Pession, 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy," IJERPH, MDPI, vol. 18(8), pages 1-29, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3919-:d:532440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/8/3919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/8/3919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    2. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    3. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    4. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    5. Lisa Cariani & Beatrice Silvia Orena & Federico Ambrogi & Simone Gambazza & Anna Maraschini & Antonella Dodaro & Massimo Oggioni & Annarosa Orlandi & Alessia Pirrone & Sara Uceda Renteria & Mara Berna, 2020. "Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    6. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Lorenz Schubert & Robert Strassl & Heinz Burgmann & Gabriella Dvorak & Matthias Karer & Michael Kundi & Manuel Kussmann & Heimo Lagler & Felix Lötsch & Christopher Milacek & Markus Obermueller & Zoe O, 2021. "A Longitudinal Seroprevalence Study Evaluating Infection Control and Prevention Strategies at a Large Tertiary Care Center with Low COVID-19 Incidence," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
    8. Ramon Roozendaal & Laura Solforosi & Daniel J. Stieh & Jan Serroyen & Roel Straetemans & Anna Dari & Muriel Boulton & Frank Wegmann & Sietske K. Rosendahl Huber & Joan E. M. van der Lubbe & Jenny Hend, 2021. "SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Shengwei Zhu & Tong Lin & John D. Spengler & Jose Guillermo Cedeño Laurent & Jelena Srebric, 2022. "The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    10. Sasha Harris-Lovett & Kara L. Nelson & Paloma Beamer & Heather N. Bischel & Aaron Bivins & Andrea Bruder & Caitlyn Butler & Todd D. Camenisch & Susan K. De Long & Smruthi Karthikeyan & David A. Larsen, 2021. "Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    11. Juan Liu & Fengfeng Mao & Jianhe Chen & Shuaiyao Lu & Yonghe Qi & Yinyan Sun & Linqiang Fang & Man Lung Yeung & Chunmei Liu & Guimei Yu & Guangyu Li & Ximing Liu & Yuansheng Yao & Panpan Huang & Dongx, 2023. "An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    13. Kumawat, Nitesh & Rashid, Mubasher & Srivastava, Akriti & Tripathi, Jai Prakash, 2023. "Hysteresis and Hopf bifurcation: Deciphering the dynamics of an in-host model of SARS-CoV-2 with logistic target cell growth and sigmoidal immune response," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    15. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    16. Patrick T. Acer & Lauren M. Kelly & Andrew A. Lover & Caitlyn S. Butler, 2022. "Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    17. Afnan Al Agha & Safiya Alshehaiween & Ahmed Elaiw & Matuka Alshaikh, 2021. "A Global Analysis of Delayed SARS-CoV-2/Cancer Model with Immune Response," Mathematics, MDPI, vol. 9(11), pages 1-27, June.
    18. Simin Zou & Xuhui He, 2021. "Effect of Train-Induced Wind on the Transmission of COVID-19: A New Insight into Potential Infectious Risks," IJERPH, MDPI, vol. 18(15), pages 1-17, August.
    19. Ioana Boeraș & Angela Curtean-Bănăduc & Doru Bănăduc & Gabriela Cioca, 2022. "Anthropogenic Sewage Water Circuit as Vector for SARS-CoV-2 Viral ARN Transport and Public Health Assessment, Monitoring and Forecasting—Sibiu Metropolitan Area (Transylvania/Romania) Study Case," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    20. Jaclyn A. Kaiser & Christine E. Nelson & Xueqiao Liu & Hong-Su Park & Yumiko Matsuoka & Cindy Luongo & Celia Santos & Laura R. H. Ahlers & Richard Herbert & Ian N. Moore & Temeri Wilder-Kofie & Rashid, 2024. "Mucosal prime-boost immunization with live murine pneumonia virus-vectored SARS-CoV-2 vaccine is protective in macaques," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3919-:d:532440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.