IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p9939-d886258.html
   My bibliography  Save this article

Reading the Score of the Air—Change in Airborne Microbial Load in Contrast to Particulate Matter during Music Making

Author

Listed:
  • Birte Knobling

    (Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany)

  • Gefion Franke

    (Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany)

  • Lisa Beike

    (Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany)

  • Timo Dickhuth

    (Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany)

  • Johannes K. Knobloch

    (Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany)

Abstract

The potential impact of music-making on air quality around musicians was inferred at the outset of the SARS-CoV-2 pandemic from measurements on individual musical instruments and from theoretical considerations. However, it is unclear to what extent playing together in an orchestra under optimal ventilation conditions really increases infection risks for individual musicians. In this study, changes in indoor air quality were assessed by measuring common parameters, i.e., temperature, relative humidity, and carbon dioxide, along with particle counting and determining the presence of airborne pharyngeal bacteria under different seating arrangements. The study was conducted in cooperation with a professional orchestra on a stage ventilated by high volume displacement ventilation. Even with a full line-up, the particle load was only slightly influenced by the presence of the musicians on stage. At the same time, however, a clear increase in pharyngeal flora could be measured in front of individual instrument groups, but independent of seat spacing. Simultaneous measurement of various air parameters and, above all, the determination of relevant indicator bacteria in the air, enables site-specific risk assessment and safe music-making even during a pandemic.

Suggested Citation

  • Birte Knobling & Gefion Franke & Lisa Beike & Timo Dickhuth & Johannes K. Knobloch, 2022. "Reading the Score of the Air—Change in Airborne Microbial Load in Contrast to Particulate Matter during Music Making," IJERPH, MDPI, vol. 19(16), pages 1-13, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:9939-:d:886258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/9939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/9939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    2. Saqib Javed & Ivar Rognhaug Ørnes & Tor Helge Dokka & Maria Myrup & Sverre Bjørn Holøs, 2021. "Evaluating the Use of Displacement Ventilation for Providing Space Heating in Unoccupied Periods Using Laboratory Experiments, Field Tests and Numerical Simulations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Wolfgang Schade & Vladislav Reimer & Martin Seipenbusch & Ulrike Willer, 2021. "Experimental Investigation of Aerosol and CO 2 Dispersion for Evaluation of COVID-19 Infection Risk in a Concert Hall," IJERPH, MDPI, vol. 18(6), pages 1-11, March.
    4. Martin Kriegel & Anne Hartmann & Udo Buchholz & Janna Seifried & Sigrid Baumgarte & Petra Gastmeier, 2021. "SARS-CoV-2 Aerosol Transmission Indoors: A Closer Look at Viral Load, Infectivity, the Effectiveness of Preventive Measures and a Simple Approach for Practical Recommendations," IJERPH, MDPI, vol. 19(1), pages 1-31, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    2. Henri Salmenjoki & Marko Korhonen & Antti Puisto & Ville Vuorinen & Mikko J Alava, 2021. "Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-12, November.
    3. John Kaiser Calautit & Hassam Nasarullah Chaudhry, 2022. "Sustainable Buildings: Heating, Ventilation, and Air-Conditioning," Energies, MDPI, vol. 15(21), pages 1-5, November.
    4. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    5. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. Junsik Park & Gurjoong Kim, 2022. "Social Efficiency of Public Transportation Policy in Response to COVID-19: Model Development and Application to Intercity Buses in Seoul Metropolitan Area," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    7. Pollozhani, Fatos & McLeod, Robert S. & Schwarzbauer, Christian & Hopfe, Christina J., 2024. "Assessing school ventilation strategies from the perspective of health, environment, and energy," Applied Energy, Elsevier, vol. 353(PA).
    8. Thomas Harweg & Mathias Wagner & Frank Weichert, 2022. "Agent-Based Simulation for Infectious Disease Modelling over a Period of Multiple Days, with Application to an Airport Scenario," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    9. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2022. "Energy, economic, and environmental impacts of enhanced ventilation strategies on railway coaches to reduce Covid-19 contagion risks," Energy, Elsevier, vol. 256(C).
    10. Wolfgang Schade & Vladislav Reimer & Martin Seipenbusch & Ulrike Willer, 2021. "Experimental Investigation of Aerosol and CO 2 Dispersion for Evaluation of COVID-19 Infection Risk in a Concert Hall," IJERPH, MDPI, vol. 18(6), pages 1-11, March.
    11. Stephen Bok & Daniel E. Martin & Erik Acosta & Maria Lee & James Shum, 2021. "Validation of the COVID-19 Transmission Misinformation Scale and Conditional Indirect Negative Effects on Wearing a Mask in Public," IJERPH, MDPI, vol. 18(21), pages 1-23, October.
    12. Martin Kriegel & Anne Hartmann & Udo Buchholz & Janna Seifried & Sigrid Baumgarte & Petra Gastmeier, 2021. "SARS-CoV-2 Aerosol Transmission Indoors: A Closer Look at Viral Load, Infectivity, the Effectiveness of Preventive Measures and a Simple Approach for Practical Recommendations," IJERPH, MDPI, vol. 19(1), pages 1-31, December.
    13. Lukas Siebler & Maurizio Calandri & Torben Rathje & Konstantinos Stergiaropoulos, 2022. "Experimental Methods of Investigating Airborne Indoor Virus-Transmissions Adapted to Several Ventilation Measures," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    14. Shirley Gee Hoon Tang & Muhamad Haziq Hasnul Hadi & Siti Rosilah Arsad & Pin Jern Ker & Santhi Ramanathan & Nayli Aliah Mohd Afandi & Madihah Mohd Afzal & Mei Wyin Yaw & Prajindra Sankar Krishnan & Ch, 2022. "Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate," IJERPH, MDPI, vol. 19(20), pages 1-38, October.
    15. Gibbons, Laurence & Javed, Saqib, 2022. "A review of HVAC solution-sets and energy performace of nearly zero-energy multi-story apartment buildings in Nordic climates by statistical analysis of environmental performance certificates and lite," Energy, Elsevier, vol. 238(PA).
    16. Kristijan Lavtižar & Alenka Fikfak & Rok Fink, 2023. "Overlooked Impacts of Urban Environments on the Air Quality in Naturally Ventilated Schools Amid the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    17. Sergio A. Chillon & Mikel Millan & Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Xabier Mendaza-Sagastizabal, 2021. "Natural Ventilation Characterization in a Classroom under Different Scenarios," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    18. Sonja Jäckle & Elias Röger & Volker Dicken & Benjamin Geisler & Jakob Schumacher & Max Westphal, 2021. "A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    19. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.
    20. Lara Moeller & Florian Wallburg & Felix Kaule & Stephan Schoenfelder, 2022. "Numerical Flow Simulation on the Virus Spread of SARS-CoV-2 Due to Airborne Transmission in a Classroom," IJERPH, MDPI, vol. 19(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:9939-:d:886258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.