IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i11p12368-13283d59252.html
   My bibliography  Save this article

Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model

Author

Listed:
  • Bin Ye

    (Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
    These authors contributed equally to this work.)

  • Jingjing Jiang

    (School of Financial Mathematics and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
    Environmental Science and Engineering Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
    These authors contributed equally to this work.)

  • Lixin Miao

    (Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Peng Yang

    (Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Ji Li

    (Environmental Science and Engineering Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China)

  • Bo Shen

    (Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

Abstract

In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy). An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.

Suggested Citation

  • Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12368-13283:d:59252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/11/12368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/11/12368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Jing Jing & Ye, Bin & Ma, Xiao Ming, 2014. "The construction of Shenzhen׳s carbon emission trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 17-21.
    2. Bo Shen & Jian Wang & Michelle Li & Jinkai Li & Lynn Price & Lei Zeng, 2013. "China's approaches to financing sustainable development: policies, practices, and issues," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(2), pages 178-198, March.
    3. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    4. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    6. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    7. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    8. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    9. Muhammad Aziz & Takuya Oda & Takashi Mitani & Yoko Watanabe & Takao Kashiwagi, 2015. "Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting," Energies, MDPI, vol. 8(5), pages 1-19, April.
    10. Fabrice Locment & Manuela Sechilariu, 2015. "Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations," Energies, MDPI, vol. 8(5), pages 1-22, May.
    11. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    12. Himri, Y. & Boudghene Stambouli, A. & Draoui, B. & Himri, S., 2008. "Techno-economical study of hybrid power system for a remote village in Algeria," Energy, Elsevier, vol. 33(7), pages 1128-1136.
    13. Haitao Liu & Yu Ji & Huaidong Zhuang & Hongbin Wu, 2015. "Multi-Objective Dynamic Economic Dispatch of Microgrid Systems Including Vehicle-to-Grid," Energies, MDPI, vol. 8(5), pages 1-20, May.
    14. Sun, Honghang & Zhi, Qiang & Wang, Yibo & Yao, Qiang & Su, Jun, 2014. "China’s solar photovoltaic industry development: The status quo, problems and approaches," Applied Energy, Elsevier, vol. 118(C), pages 221-230.
    15. Tsioliaridou, E. & Bakos, G.C. & Stadler, M., 2006. "A new energy planning methodology for the penetration of renewable energy technologies in electricity sector--application for the island of Crete," Energy Policy, Elsevier, vol. 34(18), pages 3757-3764, December.
    16. Mahmoud, Marwan M. & Ibrik, Imad H., 2006. "Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 128-138, April.
    17. Nakata, Toshihiko & Kubo, Kazuo & Lamont, Alan, 2005. "Design for renewable energy systems with application to rural areas in Japan," Energy Policy, Elsevier, vol. 33(2), pages 209-219, January.
    18. Shen, Bo & Ghatikar, Girish & Lei, Zeng & Li, Jinkai & Wikler, Greg & Martin, Phil, 2014. "The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges," Applied Energy, Elsevier, vol. 130(C), pages 814-823.
    19. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    20. Muis, Z.A. & Hashim, H. & Manan, Z.A. & Taha, F.M. & Douglas, P.L., 2010. "Optimal planning of renewable energy-integrated electricity generation schemes with CO2 reduction target," Renewable Energy, Elsevier, vol. 35(11), pages 2562-2570.
    21. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    22. Lingling Wang & Tsunemi Watanabe & Zhiwei Xu, 2015. "Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China," Energies, MDPI, vol. 8(2), pages 1-28, February.
    23. Tulpule, Pinak J. & Marano, Vincenzo & Yurkovich, Stephen & Rizzoni, Giorgio, 2013. "Economic and environmental impacts of a PV powered workplace parking garage charging station," Applied Energy, Elsevier, vol. 108(C), pages 323-332.
    24. Vermaak, Herman Jacobus & Kusakana, Kanzumba, 2014. "Design of a photovoltaic–wind charging station for small electric Tuk–tuk in D.R.Congo," Renewable Energy, Elsevier, vol. 67(C), pages 40-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosario Miceli & Fabio Viola, 2017. "Designing a Sustainable University Recharge Area for Electric Vehicles: Technical and Economic Analysis," Energies, MDPI, vol. 10(10), pages 1-24, October.
    2. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Naoui Mohamed & Flah Aymen & Abdullah Altamimi & Zafar A. Khan & Sbita Lassaad, 2022. "Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    4. Gheorghe Badea & Raluca-Andreea Felseghi & Mihai Varlam & Constantin Filote & Mihai Culcer & Mariana Iliescu & Maria Simona Răboacă, 2018. "Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles," Energies, MDPI, vol. 12(1), pages 1-16, December.
    5. Roy, Avipsa & Law, Mankin, 2022. "Examining spatial disparities in electric vehicle charging station placements using machine learning," SocArXiv hvw2t, Center for Open Science.
    6. Ashish Kumar Karmaker & Md. Alamgir Hossain & Nallapaneni Manoj Kumar & Vishnupriyan Jagadeesan & Arunkumar Jayakumar & Biplob Ray, 2020. "Analysis of Using Biogas Resources for Electric Vehicle Charging in Bangladesh: A Techno-Economic-Environmental Perspective," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    7. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    8. Tian Wu & Bohan Zeng & Yali He & Xin Tian & Xunmin Ou, 2017. "Sustainable Governance for the Opened Electric Vehicle Charging and Upgraded Facilities Market," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    9. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    10. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    11. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    13. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
    14. Amir Ahadi & Shrutidhara Sarma & Jae Sang Moon & Sangkyun Kang & Jang-Ho Lee, 2018. "A Robust Optimization for Designing a Charging Station Based on Solar and Wind Energy for Electric Vehicles of a Smart Home in Small Villages," Energies, MDPI, vol. 11(7), pages 1-15, July.
    15. Chie Hoon Song, 2021. "Exploring and Predicting the Knowledge Development in the Field of Energy Storage: Evidence from the Emerging Startup Landscape," Energies, MDPI, vol. 14(18), pages 1-20, September.
    16. Xun Zhang & Yuehui Ma & Bin Ye & Zhang-Ming Chen & Ling Xiong, 2016. "Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen," Sustainability, MDPI, vol. 8(5), pages 1-16, May.
    17. Yuan, Xian Ming & Guo, Hang & Liu, Jia Xing & Ye, Fang & Ma, Chong Fang, 2018. "Influence of operation parameters on mode switching from electrolysis cell mode to fuel cell mode in a unitized regenerative fuel cell," Energy, Elsevier, vol. 162(C), pages 1041-1051.
    18. Jamiu O. Oladigbolu & Asad Mujeeb & Amir A. Imam & Ali Muhammad Rushdi, 2022. "Design, Technical and Economic Optimization of Renewable Energy-Based Electric Vehicle Charging Stations in Africa: The Case of Nigeria," Energies, MDPI, vol. 16(1), pages 1-32, December.
    19. Mohd Bilal & Ibrahim Alsaidan & Muhannad Alaraj & Fahad M. Almasoudi & Mohammad Rizwan, 2022. "Techno-Economic and Environmental Analysis of Grid-Connected Electric Vehicle Charging Station Using AI-Based Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-40, March.
    20. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    21. Flah Aymen & Chokri Mahmoudi, 2019. "A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City," Energies, MDPI, vol. 12(5), pages 1-22, March.
    22. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    23. Jicheng Liu & Qiongjie Dai, 2020. "Portfolio Optimization of Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Stations with Sustainability Perspective Based on Cumulative Prospect Theory and MOPSO," Sustainability, MDPI, vol. 12(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Zhang & Yuehui Ma & Bin Ye & Zhang-Ming Chen & Ling Xiong, 2016. "Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen," Sustainability, MDPI, vol. 8(5), pages 1-16, May.
    2. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    3. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    4. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    5. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    6. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    7. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    8. Man, Yi & Yang, Siyu & Zhang, Jun & Qian, Yu, 2014. "Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission," Applied Energy, Elsevier, vol. 133(C), pages 197-205.
    9. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    10. Rosario Miceli & Fabio Viola, 2017. "Designing a Sustainable University Recharge Area for Electric Vehicles: Technical and Economic Analysis," Energies, MDPI, vol. 10(10), pages 1-24, October.
    11. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    12. Xiangsheng Dou, 2017. "Low Carbon Technology Innovation, Carbon Emissions Trading and Relevant Policy Support for China s Low Carbon Economy Development," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 172-184.
    13. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    14. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    15. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    16. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    17. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    18. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    19. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    20. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12368-13283:d:59252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.