IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v39y2014icp883-890.html
   My bibliography  Save this article

An economic analysis of a stand-alone and grid-connected cattle farm

Author

Listed:
  • Velo, R.
  • Osorio, L.
  • Fernández, M.D.
  • Rodríguez, M.R.

Abstract

This paper presents an economic study of electricity supply to a dairy cattle farm of 50 livestock units. We compared a stand-alone battery-wind-diesel hybrid system with an only-grid connected system and we analyzed four locations in Spain with different average wind speeds. The farm׳s electricity demand is 63kWh/d and the hybrid system designed for its supply is made up of a 20kW wind turbine, a diesel generator and a battery. All simulations were made with the HOMER© (Hybrid Optimization Model for Electric Renewables) software. Through a sensitivity analysis we can determine the economic viability of different options and sizes of the components of the installation.

Suggested Citation

  • Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
  • Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:883-890
    DOI: 10.1016/j.rser.2014.07.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211400608X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Kaldellis, J.K. & Kavadias, K.A. & Koronakis, P.S., 2007. "Comparing wind and photovoltaic stand-alone power systems used for the electrification of remote consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 57-77, January.
    3. Himri, Y. & Boudghene Stambouli, A. & Draoui, B. & Himri, S., 2008. "Techno-economical study of hybrid power system for a remote village in Algeria," Energy, Elsevier, vol. 33(7), pages 1128-1136.
    4. McHenry, Mark P., 2012. "A technical, economic, and greenhouse gas emission analysis of a homestead-scale grid-connected and stand-alone photovoltaic and diesel systems, against electricity network extension," Renewable Energy, Elsevier, vol. 38(1), pages 126-135.
    5. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum load management strategy for wind/diesel/battery hybrid power systems," Renewable Energy, Elsevier, vol. 44(C), pages 288-295.
    6. Habib, M.A & Said, S.A.M & El-Hadidy, M.A & Al-Zaharna, I, 1999. "Optimization procedure of a hybrid photovoltaic wind energy system," Energy, Elsevier, vol. 24(11), pages 919-929.
    7. Thompson, Shirley & Duggirala, Bhanu, 2009. "The feasibility of renewable energies at an off-grid community in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2740-2745, December.
    8. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    9. Weis, Timothy M. & Ilinca, Adrian, 2008. "The utility of energy storage to improve the economics of wind–diesel power plants in Canada," Renewable Energy, Elsevier, vol. 33(7), pages 1544-1557.
    10. Kumar Nandi, Sanjoy & Ranjan Ghosh, Himangshu, 2010. "Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh," Energy Policy, Elsevier, vol. 38(2), pages 976-980, February.
    11. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    12. Kolhe, Mohanlal & Kolhe, Sunita & Joshi, J. C., 2002. "Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India," Energy Economics, Elsevier, vol. 24(2), pages 155-165, March.
    13. Kamel, Sami & Dahl, Carol, 2005. "The economics of hybrid power systems for sustainable desert agriculture in Egypt," Energy, Elsevier, vol. 30(8), pages 1271-1281.
    14. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    15. Elhadidy, M.A. & Shaahid, S.M., 2000. "Parametric study of hybrid (wind + solar + diesel) power generating systems," Renewable Energy, Elsevier, vol. 21(2), pages 129-139.
    16. Giannoulis, E.D. & Haralambopoulos, D.A., 2011. "Distributed Generation in an isolated grid: Methodology of case study for Lesvos - Greece," Applied Energy, Elsevier, vol. 88(7), pages 2530-2540, July.
    17. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    18. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2012. "Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers," Energy Policy, Elsevier, vol. 42(C), pages 105-117.
    19. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    2. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
    3. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    4. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    4. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    5. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    6. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    7. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    9. William E., Lilley & Luke J., Reedman & Liam D., Wagner & Colin F., Alie & Anthony R., Szatow, 2012. "An economic evaluation of the potential for distributed energy in Australia," Energy Policy, Elsevier, vol. 51(C), pages 277-289.
    10. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    11. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    12. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
    13. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    14. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    15. Giannoulis, E.D. & Haralambopoulos, D.A., 2011. "Distributed Generation in an isolated grid: Methodology of case study for Lesvos - Greece," Applied Energy, Elsevier, vol. 88(7), pages 2530-2540, July.
    16. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    17. Batas-Bjelic, Ilija & Rajakovic, Nikola & Duic, Neven, 2017. "Smart municipal energy grid within electricity market," Energy, Elsevier, vol. 137(C), pages 1277-1285.
    18. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    19. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    20. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:883-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.