IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v10y2006i2p128-138.html
   My bibliography  Save this article

Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid

Author

Listed:
  • Mahmoud, Marwan M.
  • Ibrik, Imad H.

Abstract

As a contribution to the development program of rural areas in Palestine, this paper presents three energy supply alternatives for a remote village represented in PV system, diesel generator and electric grid. Design of these systems and the associated costs of their utilization are illustrated. A computer-aided dynamic economic evaluation method with five indicators is used to compare the economic-effectiveness of these energy systems. The results show that, utilizing of PV systems for rural electrification in Palestine is economically more feasible than using diesel generators or extension of the high voltage electric grid. The obtained results represents also a helpful reference for energy planers in Palestine and justify the consideration of PV systems more seriously.

Suggested Citation

  • Mahmoud, Marwan M. & Ibrik, Imad H., 2006. "Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 128-138, April.
  • Handle: RePEc:eee:rensus:v:10:y:2006:i:2:p:128-138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(04)00122-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud, Marwan M. & Ibrik, Imad H., 2003. "Field experience on solar electric power systems and their potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 531-543, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niebert Blair & Dirk Pons & Susan Krumdieck, 2019. "Electrification in Remote Communities: Assessing the Value of Electricity Using a Community Action Research Approach in Kabakaburi, Guyana," Sustainability, MDPI, vol. 11(9), pages 1-31, May.
    2. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    3. Imad Ibrik, 2019. "Modeling the Optimum Solar PV System for Management of Peak Demand," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 246-250.
    4. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    5. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    6. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2008. "Battery behavior prediction and battery working states analysis of a hybrid solar–wind power generation system," Renewable Energy, Elsevier, vol. 33(6), pages 1413-1423.
    7. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.
    8. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    9. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    10. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    11. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:10:y:2006:i:2:p:128-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.