Author
Abstract
Electric vehicles (EV) are an emerging mode of transportation that has the potential to reshape the transportation sector by significantly reducing carbon emissions thereby promoting a cleaner environment and pushing the boundaries of climate progress. Nevertheless, there remain significant hurdles to the widespread adoption of electric vehicles in the United States ranging from the high cost of EVs to the inequitable placement of EV charging stations (EVCS). A deeper understanding of the underlying complex interactions of social, economic, and demographic factors which may lead to such emerging disparities in EVCS placements is, therefore, necessary to mitigate accessibility issues and improve EV usage among people of all ages and abilities. In this study, we develop a machine learning framework to examine spatial disparities in EVCS placements by using a predictive approach. We first identify the essential socioeconomic factors that may contribute to spatial disparities in EVCS access. Second, using these factors along with ground truth data from existing EVCS placements we predict future ECVS density at multiple spatial scales using machine learning algorithms and compare their predictive accuracy to identify the most optimal spatial resolution for our predictions. Finally, we compare the most accurately predicted EVCS placement density with a spatial inequity indicator to quantify how equitably these placements would be for Orange County, California. Our method achieved the highest predictive accuracy (94.9%) of EVCS placement density at a spatial resolution of 3 km using Random Forests. Our results indicate that a total of 74.18% of predicted EVCS placements in Orange County will lie within a low spatial equity zone – indicating populations with the lowest accessibility may require the highest investments in EVCS placements. Within the low spatial equity areas, 14.86% of the area will have a low density of predicted EVCS placements, 50.32% will have a medium density of predicted EVCS placement, and only 9% tend to have high EVCS placements. The findings from this study highlight a generalizable framework to quantify inequities in EVCS placements that will enable policymakers to identify underserved communities and facilitate targeted infrastructure investments for widespread EV usage and adoption for all.
Suggested Citation
Roy, Avipsa & Law, Mankin, 2022.
"Examining spatial disparities in electric vehicle charging station placements using machine learning,"
SocArXiv
hvw2t_v1, Center for Open Science.
Handle:
RePEc:osf:socarx:hvw2t_v1
DOI: 10.31219/osf.io/hvw2t_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:hvw2t_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.