IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp206-218.html
   My bibliography  Save this article

Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV

Author

Listed:
  • Bishop, Justin D.K.
  • Axon, Colin J.
  • Bonilla, David
  • Tran, Martino
  • Banister, David
  • McCulloch, Malcolm D.

Abstract

Many researchers and industry observers claim that electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) could provide vehicle-to-grid (V2G) bulk energy and ancillary services to an electricity network. This work quantified the impact on various battery characteristics whilst providing such services. The sensitivity of the impact of V2G services on battery degradation was assessed for EV and PHEV for different battery capacities, charging regimes, and battery depth of discharge. Battery degradation was found to be most dependent on energy throughput for both the EV and PHEV powertrains, but was most sensitive to charging regime (for EVs) and battery capacity (for PHEVs). When providing ancillary services, battery degradation in both powertrains was most sensitive to individual vehicle battery depth of discharge. Degradation arising from both bulk energy and ancillary services could be minimised by reducing the battery capacity of the vehicle, restricting the number of hours connected and reducing the depth of discharge of each vehicle for ancillary services. Regardless, best case minimum impacts of providing V2G services are severe such as to require multiple battery pack replacements over the vehicle lifetime.

Suggested Citation

  • Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:206-218
    DOI: 10.1016/j.apenergy.2013.04.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913004121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    2. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    3. Andersson, S.-L. & Elofsson, A.K. & Galus, M.D. & Göransson, L. & Karlsson, S. & Johnsson, F. & Andersson, G., 2010. "Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany," Energy Policy, Elsevier, vol. 38(6), pages 2751-2762, June.
    4. Peng, Minghong & Liu, Lian & Jiang, Chuanwen, 2012. "A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1508-1515.
    5. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    2. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    3. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    4. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power system impacts of electric vehicles in Germany: Charging with coal or renewables?," Applied Energy, Elsevier, vol. 156(C), pages 185-196.
    5. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    7. Hota, Ashish Ranjan & Juvvanapudi, Mahesh & Bajpai, Prabodh, 2014. "Issues and solution approaches in PHEV integration to smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 217-229.
    8. Schmidt, Johannes & Eisel, Matthias & Kolbe, Lutz M., 2014. "Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems," Energy Policy, Elsevier, vol. 74(C), pages 179-189.
    9. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    10. Juul, Nina & Meibom, Peter, 2012. "Road transport and power system scenarios for Northern Europe in 2030," Applied Energy, Elsevier, vol. 92(C), pages 573-582.
    11. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    12. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    13. Yiling Zhang & Mengshi Lu & Siqian Shen, 2021. "On the Values of Vehicle-to-Grid Electricity Selling in Electric Vehicle Sharing," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 488-507, March.
    14. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    15. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    16. Bedir, Abdulkadir, 2015. "Integrating Plug-in Electric Vehicles into California’s Grid System: Policy Entrepreneurship and Technical Challenges," Institute of Transportation Studies, Working Paper Series qt48w9z0jr, Institute of Transportation Studies, UC Davis.
    17. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2017. "A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid," Energy, Elsevier, vol. 118(C), pages 197-208.
    18. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    19. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    20. Lefeng, Shi & Qian, Zhang & Yongjian, Pu, 2013. "The reserve trading model considering V2G Reverse," Energy, Elsevier, vol. 59(C), pages 50-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:206-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.