IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6959-d1254102.html
   My bibliography  Save this article

A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration

Author

Listed:
  • Bahman Ahmadi

    (Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7522 NB Enschede, The Netherlands)

  • Elham Shirazi

    (Department of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands)

Abstract

The widespread adoption of electric vehicles (EVs) poses challenges associated with charging infrastructures and their impact on the electrical grid. To address these challenges, smart charging approaches have emerged as a key solution that optimizes charging processes and contributes to a smarter and more efficient grid. This paper presents an innovative multi-objective optimization framework for EV smart charging (EVSC) using the Dynamic Hunting Leadership (DHL) method. The framework aims to improve the voltage profile of the system in addition to eliminating voltage violations and energy not supplied (ENS) to EVs within the network. The proposed approach considers both residential EV chargers and parking stations, incorporating realistic EV charger behaviors based on constant current charging and addressing the problem as a mixed integer non-linear programming (MINLP) problem. The performance of the optimization method is evaluated on a distribution network with varying levels of EV penetration connected to the chargers in the grid. The results demonstrate the effectiveness of the DHL algorithm in minimizing conflicting objectives and improving the grid’s voltage profile while considering operational constraints. This study provides a road map for EV aggregators and EV owners, guiding them on how to charge EVs based on preferences while minimizing adverse technical impacts on the grid.

Suggested Citation

  • Bahman Ahmadi & Elham Shirazi, 2023. "A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration," Energies, MDPI, vol. 16(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6959-:d:1254102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuang Che & Yan Chen & Longda Wang, 2023. "Electric Vehicle Charging Station Layout for Tourist Attractions Based on Improved Two-Population Genetic PSO," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Behzad Zargar & Ting Wang & Manuel Pitz & Rainer Bachmann & Moritz Maschmann & Angelina Bintoudi & Lampros Zyglakis & Ferdinanda Ponci & Antonello Monti & Dimosthenis Ioannidis, 2021. "Power Quality Improvement in Distribution Grids via Real-Time Smart Exploitation of Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-26, June.
    3. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    4. Abdullah Dik & Siddig Omer & Rabah Boukhanouf, 2022. "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration," Energies, MDPI, vol. 15(3), pages 1-26, January.
    5. Su, Jun & Lie, T.T. & Zamora, Ramon, 2020. "A rolling horizon scheduling of aggregated electric vehicles charging under the electricity exchange market," Applied Energy, Elsevier, vol. 275(C).
    6. Taghizadeh, Seyedfoad & Hossain, M.J. & Lu, Junwei & Water, Wayne, 2018. "A unified multi-functional on-board EV charger for power-quality control in household networks," Applied Energy, Elsevier, vol. 215(C), pages 186-201.
    7. Yang, Wenjun & Guo, Jia & Vartosh, Aris, 2022. "Optimal economic-emission planning of multi-energy systems integrated electric vehicles with modified group search optimization," Applied Energy, Elsevier, vol. 311(C).
    8. Qing Deng & Changsen Feng & Fushuan Wen & Chung-Li Tseng & Lei Wang & Bo Zou & Xizhu Zhang, 2019. "Evaluation of Accommodation Capability for Electric Vehicles of a Distribution System Considering Coordinated Charging Strategies," Energies, MDPI, vol. 12(16), pages 1-20, August.
    9. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    10. Sara Deilami & S. M. Muyeen, 2020. "An Insight into Practical Solutions for Electric Vehicle Charging in Smart Grid," Energies, MDPI, vol. 13(7), pages 1-13, March.
    11. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    12. Naireeta Deb & Rajendra Singh & Richard R. Brooks & Kevin Bai, 2021. "A Review of Extremely Fast Charging Stations for Electric Vehicles," Energies, MDPI, vol. 14(22), pages 1-27, November.
    13. Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
    14. Haghnegahdar, Lida & Chen, Yu & Wang, Yong, 2022. "Enhancing dynamic energy network management using a multiagent cloud-fog structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel Borroy Vicente & Gregorio Fernández & Noemi Galan & Andrés Llombart Estopiñán & Matteo Salani & Marco Derboni & Vincenzo Giuffrida & Luis Hernández-Callejo, 2024. "Assessment of the Technical Impacts of Electric Vehicle Penetration in Distribution Networks: A Focus on System Management Strategies Integrating Sustainable Local Energy Communities," Sustainability, MDPI, vol. 16(15), pages 1-21, July.
    2. Abdellatif Soussi & Enrico Zero & Alessandro Bozzi & Roberto Sacile, 2024. "Enhancing Energy Systems and Rural Communities through a System of Systems Approach: A Comprehensive Review," Energies, MDPI, vol. 17(19), pages 1-43, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    3. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    4. Razeghi, Ghazal & Samuelsen, Scott, 2016. "Impacts of plug-in electric vehicles in a balancing area," Applied Energy, Elsevier, vol. 183(C), pages 1142-1156.
    5. Lei, Xiang & Yu, Hang & Shao, Ziyun & Jian, Linni, 2023. "Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China's uncertain electricity markets," Energy, Elsevier, vol. 283(C).
    6. Lorenzo Ricciardi Celsi & Anna Valli, 2023. "Applied Control and Artificial Intelligence for Energy Management: An Overview of Trends in EV Charging, Cyber-Physical Security and Predictive Maintenance," Energies, MDPI, vol. 16(12), pages 1-23, June.
    7. Mohammad Waseem & Eniganti Sreeshobha & Kotha Shashidhar Reddy & Teresa Donateo, 2024. "State-of-the-Art and Advancement of Charging Infrastructure in Electric Mobility: An Integrated Review," Energies, MDPI, vol. 17(23), pages 1-35, December.
    8. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    9. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    10. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    11. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    12. Ibrahim Tumay Gulbahar & Muhammed Sutcu & Abedalmuhdi Almomany & Babul Salam KSM Kader Ibrahim, 2023. "Optimizing Electric Vehicle Charging Station Location on Highways: A Decision Model for Meeting Intercity Travel Demand," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    13. Zeeshan Anjum Memon & Dalila Mat Said & Mohammad Yusri Hassan & Hafiz Mudassir Munir & Faisal Alsaif & Sager Alsulamy, 2023. "Effective Deterministic Methodology for Enhanced Distribution Network Performance and Plug-in Electric Vehicles," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    14. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    15. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    16. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    17. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    18. Harini Sampath & Chellammal Nallaperumal & Md. Jahangir Hossain, 2024. "Quasi-Resonant Converter for Electric Vehicle Charging Applications: Analysis, Design, and Markov Model Use for Reliability Estimation," Energies, MDPI, vol. 17(4), pages 1-18, February.
    19. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    20. Xiao, Jingjie, 2013. "Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming," MPRA Paper 58696, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6959-:d:1254102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.