IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3533-d574667.html
   My bibliography  Save this article

Power Quality Improvement in Distribution Grids via Real-Time Smart Exploitation of Electric Vehicles

Author

Listed:
  • Behzad Zargar

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany)

  • Ting Wang

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany)

  • Manuel Pitz

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany)

  • Rainer Bachmann

    (E:E Consulting GmbH, Eichenweg 2 b, D-21521 Aumühle, Germany)

  • Moritz Maschmann

    (Schleswig-Holstein Netz AG, Kieler Straße 47, 24768 Rendsburg, Germany)

  • Angelina Bintoudi

    (Centre for Research and Technology—Hellas, Information Technologies Institute, P.O. Box 60361, 5700 Thessaloniki, Greece)

  • Lampros Zyglakis

    (Centre for Research and Technology—Hellas, Information Technologies Institute, P.O. Box 60361, 5700 Thessaloniki, Greece)

  • Ferdinanda Ponci

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany)

  • Antonello Monti

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany)

  • Dimosthenis Ioannidis

    (Centre for Research and Technology—Hellas, Information Technologies Institute, P.O. Box 60361, 5700 Thessaloniki, Greece)

Abstract

Integration of electric vehicles into electric power system brings both challenges and solutions in the operation of power grids. On the one hand, simultaneously charging a large number of electric vehicles causes branch congestion or large voltage drop. Operating the electric vehicles in the discharging mode, on the other hand, introduces the provision of several ancillary services like peak power shaving and spinning reserves. From the electric vehicles operation point of view, thus, the distribution system operators require a real-time monitoring infrastructure to capture the states of electric vehicle chargers and accordingly operate their grids in the safe mode with respect to the power quality standards (e.g., EN 50160). In this context, the real-time smart charging and storage platform of the EU Horizon 2020 “MEISTER” project, based on the information and communication technology, manages the availability of electric vehicles as a potential source of energy in the need of one or more flexibility services demanded by low voltage distribution system operators. In addition to the implemented information and communication technology platform, this paper presents how the smart use of the electric vehicle resources supports the power quality of the distribution system in terms of system voltage support, bidirectional power flow management, harmonic alleviation and power factor control.

Suggested Citation

  • Behzad Zargar & Ting Wang & Manuel Pitz & Rainer Bachmann & Moritz Maschmann & Angelina Bintoudi & Lampros Zyglakis & Ferdinanda Ponci & Antonello Monti & Dimosthenis Ioannidis, 2021. "Power Quality Improvement in Distribution Grids via Real-Time Smart Exploitation of Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3533-:d:574667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Paschalis A. Gkaidatzis & Athanasios Tryferidis & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "OptiMEMS: An Adaptive Lightweight Optimal Microgrid Energy Management System Based on the Novel Virtual Distributed Energy Resources in Real-Life Demonstration," Energies, MDPI, vol. 14(10), pages 1-19, May.
    2. Shahid Hussain & Ki-Beom Lee & Mohamed A. Ahmed & Barry Hayes & Young-Chon Kim, 2020. "Two-Stage Fuzzy Logic Inference Algorithm for Maximizing the Quality of Performance under the Operational Constraints of Power Grid in Electric Vehicle Parking Lots," Energies, MDPI, vol. 13(18), pages 1-31, September.
    3. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    4. Shahid Hussain & Mohamed A. Ahmed & Ki-Beom Lee & Young-Chon Kim, 2020. "Fuzzy Logic Weight Based Charging Scheme for Optimal Distribution of Charging Power among Electric Vehicles in a Parking Lot," Energies, MDPI, vol. 13(12), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Himadry Shekhar Das & Md Nurunnabi & Mohamed Salem & Shuhui Li & Mohammad Mominur Rahman, 2022. "Utilization of Electric Vehicle Grid Integration System for Power Grid Ancillary Services," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Bahman Ahmadi & Elham Shirazi, 2023. "A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration," Energies, MDPI, vol. 16(19), pages 1-26, October.
    3. Matthias Schilcher & Sebastian Neff & Jeanette Muenderlein, 2023. "Controlling the Reactive Power Demand of a Distribution Grid by Coordinated Action of Electric Vehicle Chargers," Energies, MDPI, vol. 16(14), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eiman ElGhanam & Ibtihal Ahmed & Mohamed Hassan & Ahmed Osman, 2021. "Authentication and Billing for Dynamic Wireless EV Charging in an Internet of Electric Vehicles," Future Internet, MDPI, vol. 13(10), pages 1-19, October.
    2. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    3. Mohammad Hossein Fouladfar & Nagham Saeed & Mousa Marzband & Giuseppe Franchini, 2021. "Home-Microgrid Energy Management Strategy Considering EV’s Participation in DR," Energies, MDPI, vol. 14(18), pages 1-12, September.
    4. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    5. Ahmed Abdu Alattab & Reyazur Rashid Irshad & Anwar Ali Yahya & Amin A. Al-Awady, 2022. "Privacy Protected Preservation of Electric Vehicles’ Data in Cloud Computing Using Secure Data Access Control," Energies, MDPI, vol. 15(21), pages 1-13, October.
    6. Shahid Hussain & Subhasis Thakur & Saurabh Shukla & John G. Breslin & Qasim Jan & Faisal Khan & Ibrar Ahmad & Mousa Marzband & Michael G. Madden, 2022. "A Heuristic Charging Cost Optimization Algorithm for Residential Charging of Electric Vehicles," Energies, MDPI, vol. 15(4), pages 1-18, February.
    7. Kyo Beom Han & Jaesung Jung & Byung O Kang, 2021. "Real-Time Load Variability Control Using Energy Storage System for Demand-Side Management in South Korea," Energies, MDPI, vol. 14(19), pages 1-17, October.
    8. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    9. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    10. Marek Krok & Paweł Majewski & Wojciech P. Hunek & Tomasz Feliks, 2022. "Energy Optimization of the Continuous-Time Perfect Control Algorithm," Energies, MDPI, vol. 15(4), pages 1-13, February.
    11. Bruno Pinto & Filipe Barata & Constantino Soares & Carla Viveiros, 2020. "Fleet Transition from Combustion to Electric Vehicles: A Case Study in a Portuguese Business Campus," Energies, MDPI, vol. 13(5), pages 1-24, March.
    12. Alain Aoun & Hussein Ibrahim & Mazen Ghandour & Adrian Ilinca, 2019. "Supply Side Management vs. Demand Side Management of a Residential Microgrid Equipped with an Electric Vehicle in a Dual Tariff Scheme," Energies, MDPI, vol. 12(22), pages 1-21, November.
    13. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    14. Mohammed Al-Saadi & Sharmistha Bhattacharyya & Pierre Van Tichelen & Manuel Mathes & Johannes Käsgen & Joeri Van Mierlo & Maitane Berecibar, 2022. "Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet," Energies, MDPI, vol. 15(4), pages 1-16, February.
    15. Abhinav Tiwari & Hany Farag, 2022. "Analysis and Modeling of Value Creation Opportunities and Governing Factors for Electric Vehicle Proliferation," Energies, MDPI, vol. 16(1), pages 1-26, December.
    16. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    17. Dominic Savio Abraham & Balaji Chandrasekar & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Venkatesan Ramakrishnan & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station," Energies, MDPI, vol. 16(6), pages 1-17, March.
    18. Piotr Bielaczyc & Rafal Sala & Tomasz Meinicke, 2021. "Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain," Energies, MDPI, vol. 14(4), pages 1-18, February.
    19. Winschermann, Leoni & Bañol Arias, Nataly & Hoogsteen, Gerwin & Hurink, Johann, 2023. "Assessing the value of information for electric vehicle charging strategies at office buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Yuriy Bilan & Marcin Rabe & Katarzyna Widera, 2022. "Distributed Energy Resources: Operational Benefits," Energies, MDPI, vol. 15(23), pages 1-7, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3533-:d:574667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.