Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.120111
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
- Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
- Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
- Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
- Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
- Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
- Su, Jun & Lie, T.T. & Zamora, Ramon, 2020. "A rolling horizon scheduling of aggregated electric vehicles charging under the electricity exchange market," Applied Energy, Elsevier, vol. 275(C).
- Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Khaki, Behnam & Chu, Chicheng & Gadh, Rajit, 2019. "Hierarchical distributed framework for EV charging scheduling using exchange problem," Applied Energy, Elsevier, vol. 241(C), pages 461-471.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
- Niphon Kaewdornhan & Chitchai Srithapon & Rittichai Liemthong & Rongrit Chatthaworn, 2023. "Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization," Energies, MDPI, vol. 16(5), pages 1-25, March.
- Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
- Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
- Truong, Van Binh & Le, Long Bao, 2024. "Electric vehicle charging design: The factored action based reinforcement learning approach," Applied Energy, Elsevier, vol. 359(C).
- Cheng, Xiu & Li, Wenbo & Yang, Jiameng & Zhang, Linling, 2023. "How convenience and informational tools shape waste separation behavior: A social network approach," Resources Policy, Elsevier, vol. 86(PB).
- Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
- Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
- Zhou, Yanting & Ma, Zhongjing & Shi, Xingyu & Zou, Suli, 2024. "Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint," Energy, Elsevier, vol. 288(C).
- P, Balakumar & Ramu, Senthil Kumar & T, Vinopraba, 2024. "Optimizing electric vehicle charging in distribution networks: A dynamic pricing approach using internet of things and Bi-directional LSTM model," Energy, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Goh, Hui Hwang, 2023. "Incentive-based demand response under incomplete information based on the deep deterministic policy gradient," Applied Energy, Elsevier, vol. 351(C).
- Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
- Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
- Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
- Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).
- Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
- Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
- Yi Kuang & Xiuli Wang & Hongyang Zhao & Yijun Huang & Xianlong Chen & Xifan Wang, 2020. "Agent-Based Energy Sharing Mechanism Using Deep Deterministic Policy Gradient Algorithm," Energies, MDPI, vol. 13(19), pages 1-20, September.
- Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
- Tsaousoglou, Georgios & Giraldo, Juan S. & Paterakis, Nikolaos G., 2022. "Market Mechanisms for Local Electricity Markets: A review of models, solution concepts and algorithmic techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
- Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
- Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
- Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
- Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
More about this item
Keywords
Electric vehicles; Smart grid; Scheduling; Multi-agent deep reinforcement learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s030626192201368x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.