IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2603-d1053936.html
   My bibliography  Save this article

Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods

Author

Listed:
  • Tehseen Mazhar

    (Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan)

  • Rizwana Naz Asif

    (School of Computer Science, National College of Business Administration & Economics, Lahore 54000, Pakistan)

  • Muhammad Amir Malik

    (Department of Computer Science and Software Engineering, Islamic International University, Islamabad 44000, Pakistan)

  • Muhammad Asgher Nadeem

    (Department of Computer Science, University of Sargodha, Sargodha 40100, Pakistan)

  • Inayatul Haq

    (School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Muhammad Iqbal

    (Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan)

  • Muhammad Kamran

    (Department of Computer Science, NCBA&E Multan, Multan 60650, Pakistan)

  • Shahzad Ashraf

    (NFC Institute of Engineering and Technology, Multan 60650, Pakistan)

Abstract

Smart cities require the development of information and communication technology to become a reality (ICT). A “smart city” is built on top of a “smart grid”. The implementation of numerous smart systems that are advantageous to the environment and improve the quality of life for the residents is one of the main goals of the new smart cities. In order to improve the reliability and sustainability of the transportation system, changes are being made to the way electric vehicles (EVs) are used. As EV use has increased, several problems have arisen, including the requirement to build a charging infrastructure, and forecast peak loads. Management must consider how challenging the situation is. There have been many original solutions to these problems. These heavily rely on automata models, machine learning, and the Internet of Things. Over time, there have been more EV drivers. Electric vehicle charging at a large scale negatively impacts the power grid. Transformers may face additional voltage fluctuations, power loss, and heat if already operating at full capacity. Without EV management, these challenges cannot be solved. A machine-learning (ML)-based charge management system considers conventional charging, rapid charging, and vehicle-to-grid (V2G) technologies while guiding electric cars (EVs) to charging stations. This operation reduces the expenses associated with charging, high voltages, load fluctuation, and power loss. The effectiveness of various machine learning (ML) approaches is evaluated and compared. These techniques include Deep Neural Networks (DNN), K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) (DNN). According to the results, LSTM might be used to give EV control in certain circumstances. The LSTM model’s peak voltage, power losses, and voltage stability may all be improved by compressing the load curve. In addition, we keep our billing costs to a minimum, as well.

Suggested Citation

  • Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2603-:d:1053936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    2. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    3. Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
    4. Mena ElMenshawy & Ahmed Massoud, 2020. "Modular Isolated DC-DC Converters for Ultra-Fast EV Chargers: A Generalized Modeling and Control Approach," Energies, MDPI, vol. 13(10), pages 1-34, May.
    5. Peter Carr & Liuren Wu & Zhibai Zhang, 2019. "Using Machine Learning to Predict Realized Variance," Papers 1909.10035, arXiv.org.
    6. Roy Chaoming Hsu & Tzu-Hao Lin & Po-Cheng Su, 2022. "Dynamic Energy Management for Perpetual Operation of Energy Harvesting Wireless Sensor Node Using Fuzzy Q-Learning," Energies, MDPI, vol. 15(9), pages 1-22, April.
    7. Aya Amer & Khaled Shaban & Ahmed Gaouda & Ahmed Massoud, 2021. "Home Energy Management System Embedded with a Multi-Objective Demand Response Optimization Model to Benefit Customers and Operators," Energies, MDPI, vol. 14(2), pages 1-19, January.
    8. Raquel Ramirez-Vazquez & Jesus Gonzalez-Rubio & Isabel Escobar & Carmen del Pilar Suarez Rodriguez & Enrique Arribas, 2021. "Personal Exposure Assessment to Wi-Fi Radiofrequency Electromagnetic Fields in Mexican Microenvironments," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    9. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2021. "Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation," Energies, MDPI, vol. 14(19), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabir Momoh & Shamsul Aizam Zulkifli & Petr Korba & Felix Rafael Segundo Sevilla & Arif Nur Afandi & Alfredo Velazquez-Ibañez, 2023. "State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks," Energies, MDPI, vol. 16(9), pages 1-29, May.
    2. Huilian Liao & Elizabeth Michalenko & Sarat Chandra Vegunta, 2023. "Review of Big Data Analytics for Smart Electrical Energy Systems," Energies, MDPI, vol. 16(8), pages 1-19, April.
    3. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    4. Ahmet Aksoz & Burçak Asal & Emre Biçer & Saadin Oyucu & Merve Gençtürk & Saeed Golestan, 2024. "Advancing Electric Vehicle Infrastructure: A Review and Exploration of Battery-Assisted DC Fast Charging Stations," Energies, MDPI, vol. 17(13), pages 1-23, June.
    5. Bahman Ahmadi & Elham Shirazi, 2023. "A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration," Energies, MDPI, vol. 16(19), pages 1-26, October.
    6. Ibrahim Tumay Gulbahar & Muhammed Sutcu & Abedalmuhdi Almomany & Babul Salam KSM Kader Ibrahim, 2023. "Optimizing Electric Vehicle Charging Station Location on Highways: A Decision Model for Meeting Intercity Travel Demand," Sustainability, MDPI, vol. 15(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Design of Metaheuristic Optimization with Deep-Learning-Assisted Solar-Operated On-Board Smart Charging Station for Mass Transport Passenger Vehicle," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    2. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2021. "Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation," Energies, MDPI, vol. 14(19), pages 1-22, September.
    3. Fan Li & Dong Liu & Boyu Qin & Ke Sun & Dan Wang & Hanqing Liang & Cheng Zhang & Taikun Tao, 2022. "Multi-Objective Energy Optimal Scheduling of Multiple Pulsed Loads in Isolated Power Systems," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    4. Ali Aillane & Karim Dahech & Larbi Chrifi-Alaoui & Aissa Chouder & Tarak Damak & Abdelhak Hadjkaddour & Pascal Bussy, 2023. "The Design and Processor-In-The-Loop Implementation of a Super-Twisting Control Algorithm Based on a Luenberger Observer for a Seamless Transition between Grid-Connected and Stand-Alone Modes in Micro," Energies, MDPI, vol. 16(9), pages 1-22, May.
    5. Liudmyla Davydenko & Nina Davydenko & Andrii Bosak & Alla Bosak & Agnieszka Deja & Tygran Dzhuguryan, 2022. "Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging," Energies, MDPI, vol. 15(10), pages 1-27, May.
    6. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Minan Tang & Chenchen Zhang & Yaqi Zhang & Yaguang Yan & Wenjuan Wang & Bo An, 2024. "A Dual-Layer MPC of Coordinated Control of Battery Load Demand and Grid-Side Supply Matching at Electric Vehicle Swapping Stations," Energies, MDPI, vol. 17(4), pages 1-26, February.
    8. White, Chris & Thompson, Ben & Swan, Lukas G., 2021. "Comparative performance study of electric vehicle batteries repurposed for electricity grid energy arbitrage," Applied Energy, Elsevier, vol. 288(C).
    9. Tianyao Zhang & Diyi Chen & Jing Liu & Beibei Xu & Venkateshkumar M, 2020. "A Feasibility Analysis of Controlling a Hybrid Power System over Short Time Intervals," Energies, MDPI, vol. 13(21), pages 1-21, October.
    10. Yao Pei & Yann Le Bihan & Mohamed Bensetti & Lionel Pichon, 2021. "Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    11. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Mohammed Ali Khan & Ahteshamul Haque & Frede Blaabjerg & Varaha Satya Bharath Kurukuru & Huai Wang, 2021. "Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    13. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    14. Rob Shipman & Rebecca Roberts & Julie Waldron & Chris Rimmer & Lucelia Rodrigues & Mark Gillott, 2021. "Online Machine Learning of Available Capacity for Vehicle-to-Grid Services during the Coronavirus Pandemic," Energies, MDPI, vol. 14(21), pages 1-16, November.
    15. Auza, Anna & Asadi, Ehsan & Chenari, Behrang & Gameiro da Silva, Manuel, 2024. "Review of cost objective functions in multi-objective optimisation analysis of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Teresa Pamuła & Wiesław Pamuła, 2020. "Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning," Energies, MDPI, vol. 13(9), pages 1-17, May.
    17. Mena ElMenshawy & Ahmed Massoud, 2022. "Medium-Voltage DC-DC Converter Topologies for Electric Bus Fast Charging Stations: State-of-the-Art Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    18. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    19. Sebastian Angermeier & Jonas Ketterer & Christian Karcher, 2020. "Liquid-Based Battery Temperature Control of Electric Buses," Energies, MDPI, vol. 13(19), pages 1-20, September.
    20. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2603-:d:1053936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.