Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
- Khorasanizadeh, H. & Mohammadi, K., 2013. "Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran," Energy, Elsevier, vol. 51(C), pages 257-266.
- Gabriel de Freitas Viscondi & Solange N. Alves-Souza, 2021. "Solar Irradiance Prediction with Machine Learning Algorithms: A Brazilian Case Study on Photovoltaic Electricity Generation," Energies, MDPI, vol. 14(18), pages 1-15, September.
- Senkal, Ozan & Kuleli, Tuncay, 2009. "Estimation of solar radiation over Turkey using artificial neural network and satellite data," Applied Energy, Elsevier, vol. 86(7-8), pages 1222-1228, July.
- Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Prediction of monthly average global solar radiation based on statistical distribution of clearness index," Energy, Elsevier, vol. 90(P2), pages 1733-1742.
- Anton Vernet & Alexandre Fabregat, 2023. "Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula," Energies, MDPI, vol. 16(6), pages 1-18, March.
- Rahimikhoob, Ali, 2010. "Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment," Renewable Energy, Elsevier, vol. 35(9), pages 2131-2135.
- El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
- Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
- Wongchai Anupong & Muhsin Jaber Jweeg & Sameer Alani & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Comparison of Wavelet Artificial Neural Network, Wavelet Support Vector Machine, and Adaptive Neuro-Fuzzy Inference System Methods in Estimating Total Solar Radiation in Iraq," Energies, MDPI, vol. 16(2), pages 1-14, January.
- Almorox, J. & Benito, M. & Hontoria, C., 2005. "Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain," Renewable Energy, Elsevier, vol. 30(6), pages 931-936.
- Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
- Nunez Munoz, Maria & Ballantyne, Erica E.F. & Stone, David A., 2022. "Development and evaluation of empirical models for the estimation of hourly horizontal diffuse solar irradiance in the United Kingdom," Energy, Elsevier, vol. 241(C).
- Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
- Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Potential of four different machine-learning algorithms in modeling daily global solar radiation," Renewable Energy, Elsevier, vol. 111(C), pages 52-62.
- Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
- Bosch, J.L. & López, G. & Batlles, F.J., 2008. "Daily solar irradiation estimation over a mountainous area using artificial neural networks," Renewable Energy, Elsevier, vol. 33(7), pages 1622-1628.
- Chia-Sheng Tu & Wen-Chang Tsai & Chih-Ming Hong & Whei-Min Lin, 2022. "Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization," Energies, MDPI, vol. 15(18), pages 1-20, September.
- Eduardo Rodríguez & José M. Cardemil & Allan R. Starke & Rodrigo Escobar, 2022. "Modelling the Exergy of Solar Radiation: A Review," Energies, MDPI, vol. 15(4), pages 1-26, February.
- Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
- Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
- Sujan Ghimire & Ravinesh C Deo & Nawin Raj & Jianchun Mi, 2019. "Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction," Energies, MDPI, vol. 12(12), pages 1-39, June.
- Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
- Jiang, Yingni, 2009. "Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models," Energy, Elsevier, vol. 34(9), pages 1276-1283.
- Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
- Adaramola, Muyiwa S., 2012. "Estimating global solar radiation using common meteorological data in Akure, Nigeria," Renewable Energy, Elsevier, vol. 47(C), pages 38-44.
- Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
- Raihan Kamil & Pranda M. P. Garniwa & Hyunjin Lee, 2021. "Performance Assessment of Global Horizontal Irradiance Models in All-Sky Conditions," Energies, MDPI, vol. 14(23), pages 1-20, November.
- Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.
- Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong, 2010. "Estimating daily global solar radiation by day of year in China," Applied Energy, Elsevier, vol. 87(10), pages 3011-3017, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chih-Chiang Wei & Yen-Chen Yang, 2023. "A Global Solar Radiation Forecasting System Using Combined Supervised and Unsupervised Learning Models," Energies, MDPI, vol. 16(23), pages 1-18, November.
- Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2024. "Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis," Energies, MDPI, vol. 17(17), pages 1-42, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
- Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
- Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
- Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2024. "Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis," Energies, MDPI, vol. 17(17), pages 1-42, August.
- Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
- Hussain, Sajid & AlAlili, Ali, 2017. "A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks," Applied Energy, Elsevier, vol. 208(C), pages 540-550.
- Hussain, Sajid & Al-Alili, Ali, 2016. "A new approach for model validation in solar radiation using wavelet, phase and frequency coherence analysis," Applied Energy, Elsevier, vol. 164(C), pages 639-649.
- Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
- Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
- Mohanty, Sthitapragyan & Patra, Prashanta Kumar & Sahoo, Sudhansu Sekhar, 2016. "Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 778-796.
- Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
- Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
- Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
- Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
- Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
- Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
- Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong, 2010. "Estimating daily global solar radiation by day of year in China," Applied Energy, Elsevier, vol. 87(10), pages 3011-3017, October.
More about this item
Keywords
artificial neural network (ANN); solar energy; solar radiation; empirical models; statistical indicator; Borg El-Arab; Egypt;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6165-:d:1224448. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.